首页 > 最新文献

International Journal of Applied Glass Science最新文献

英文 中文
Sound insulation performance of tempered vacuum glass: Theory and experiment
IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2025-01-07 DOI: 10.1111/ijag.16699
Gaowei Yue, Yanwen Zhang, Lu Wang, Minmin Li, Haixiao Lin, Yanbing Li

Compared with insulating glass, tempered vacuum glass (TVG) is not only safer, but also more effective in sound insulation and heat insulation. In this paper, for the sound insulation performance of tempered vacuum glass, the acoustic wave transfer model of TVG is established, and the equation for sound insulation is deduced by using wave transfer method (WTM). Then the actual sound insulation loss of tempered vacuum glass was tested based on the method of reverberation room and anechoic room. finally, the sound insulation loss of tempered vacuum glass under different factors is analyzed. The results show that the theoretical calculation results are consistent with the experimental results about the general change trend of the sound insulation. The thicker the glass, the better the sound insulation. The more the supports in vacuum layer of tempered vacuum glass, the smaller the sound insulation loss. The thickness of the vacuum layer has different sound insulation loss at different frequencies. When the thickness of the vacuum layer is about 0.25 mm, tempered vacuum glass has the best sound insulation performance. This research will have important guiding significance for the selection of building sound insulation glass and the design of sound insulation glass.

{"title":"Sound insulation performance of tempered vacuum glass: Theory and experiment","authors":"Gaowei Yue,&nbsp;Yanwen Zhang,&nbsp;Lu Wang,&nbsp;Minmin Li,&nbsp;Haixiao Lin,&nbsp;Yanbing Li","doi":"10.1111/ijag.16699","DOIUrl":"https://doi.org/10.1111/ijag.16699","url":null,"abstract":"<p>Compared with insulating glass, tempered vacuum glass (TVG) is not only safer, but also more effective in sound insulation and heat insulation. In this paper, for the sound insulation performance of tempered vacuum glass, the acoustic wave transfer model of TVG is established, and the equation for sound insulation is deduced by using wave transfer method (WTM). Then the actual sound insulation loss of tempered vacuum glass was tested based on the method of reverberation room and anechoic room. finally, the sound insulation loss of tempered vacuum glass under different factors is analyzed. The results show that the theoretical calculation results are consistent with the experimental results about the general change trend of the sound insulation. The thicker the glass, the better the sound insulation. The more the supports in vacuum layer of tempered vacuum glass, the smaller the sound insulation loss. The thickness of the vacuum layer has different sound insulation loss at different frequencies. When the thickness of the vacuum layer is about 0.25 mm, tempered vacuum glass has the best sound insulation performance. This research will have important guiding significance for the selection of building sound insulation glass and the design of sound insulation glass.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and durability of opal crystallized glass plates
IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-12-12 DOI: 10.1111/ijag.16698
Léa Brunswic, Frédéric Angeli, Laurent Gautron, Thibault Charpentier, Stephane Gin, Pierre Asplanato, Huseyin Kaya, Seong H. Kim

An opal crystallized glass plate, obtained from the addition of fluorine to a soda-lime base, has been structurally characterized and altered in food contact like conditions. The investigations on the pristine glass evidenced the nature of CaF2, BaF2, and NaF crystalline phases. Overall a continuum of fully vitreous to glass-ceramic material was noticed with different morphology: the top surface that resembles a soda-lime glass which was prepared as a slab and the highly crystallized bulk using powder. Powder and slab were altered together at 70°C in acetic acid 4% (v/v) imposing a pH of 2.4 for 231 days to 3 years. The bulk powder alteration was characterized by a predominant hydrolysis mechanism impacting the crystals and the glassy matrix, leaving no remaining altered layer at the surface whereas a 1.25 µm thick alteration layer was observed on the top surface of the plate after 231 days of alteration. The mechanisms for the formation of this altered layer as well as the differences between the powder, representative of the bulk opal crystallized glass, and the slab that remains the actual surface in contact with edibles are discussed in the article.

{"title":"Structure and durability of opal crystallized glass plates","authors":"Léa Brunswic,&nbsp;Frédéric Angeli,&nbsp;Laurent Gautron,&nbsp;Thibault Charpentier,&nbsp;Stephane Gin,&nbsp;Pierre Asplanato,&nbsp;Huseyin Kaya,&nbsp;Seong H. Kim","doi":"10.1111/ijag.16698","DOIUrl":"https://doi.org/10.1111/ijag.16698","url":null,"abstract":"<p>An opal crystallized glass plate, obtained from the addition of fluorine to a soda-lime base, has been structurally characterized and altered in food contact like conditions. The investigations on the pristine glass evidenced the nature of CaF<sub>2</sub>, BaF<sub>2</sub>, and NaF crystalline phases. Overall a continuum of fully vitreous to glass-ceramic material was noticed with different morphology: the top surface that resembles a soda-lime glass which was prepared as a slab and the highly crystallized bulk using powder. Powder and slab were altered together at 70°C in acetic acid 4% (v/v) imposing a pH of 2.4 for 231 days to 3 years. The bulk powder alteration was characterized by a predominant hydrolysis mechanism impacting the crystals and the glassy matrix, leaving no remaining altered layer at the surface whereas a 1.25 µm thick alteration layer was observed on the top surface of the plate after 231 days of alteration. The mechanisms for the formation of this altered layer as well as the differences between the powder, representative of the bulk opal crystallized glass, and the slab that remains the actual surface in contact with edibles are discussed in the article.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16698","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cu(In, Ga)(Se, S)2 thin-film technology: Aspects of historical development, current status, and future prospects
IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-12-05 DOI: 10.1111/ijag.16696
Thomas Dalibor, Rene Reichel, Chung Hsien Wu, Peter Borowski, Shou Peng, Jie Chen

Copper indium gallium selenide (CIGS)-based solar cells are a type of thin-film photovoltaic technology used to convert sunlight into electricity. They are one of the most promising thin-film technologies with high efficiency and low-cost potential. CIGS is a direct band gap material with a high absorption coefficient, around 2 µm thickness can absorb most of the light which can reduce the usage of material. CIGS solar cells have a better temperature coefficient, meaning their efficiency decreases less in high-temperature environments compared to other solar technologies. Furthermore, CIGS solar cells also have excellent low-light performance due to their broad absorption spectrum. This allows them to generate electricity even in partially shaded or cloudy conditions, which can be common in urban environments with tall buildings or trees casting shadows. Thus, CIGS solar cells are also a good option to be used for building-integrated PV (BIPV) systems. The latest cell efficiency record was reached in 2023 with 23.6%. Ongoing research aims to increase efficiency, durability, and cost-effectiveness, making the CIGS thin-film technology a mainstream option for solar energy generation.

{"title":"Cu(In, Ga)(Se, S)2 thin-film technology: Aspects of historical development, current status, and future prospects","authors":"Thomas Dalibor,&nbsp;Rene Reichel,&nbsp;Chung Hsien Wu,&nbsp;Peter Borowski,&nbsp;Shou Peng,&nbsp;Jie Chen","doi":"10.1111/ijag.16696","DOIUrl":"https://doi.org/10.1111/ijag.16696","url":null,"abstract":"<p>Copper indium gallium selenide (CIGS)-based solar cells are a type of thin-film photovoltaic technology used to convert sunlight into electricity. They are one of the most promising thin-film technologies with high efficiency and low-cost potential. CIGS is a direct band gap material with a high absorption coefficient, around 2 µm thickness can absorb most of the light which can reduce the usage of material. CIGS solar cells have a better temperature coefficient, meaning their efficiency decreases less in high-temperature environments compared to other solar technologies. Furthermore, CIGS solar cells also have excellent low-light performance due to their broad absorption spectrum. This allows them to generate electricity even in partially shaded or cloudy conditions, which can be common in urban environments with tall buildings or trees casting shadows. Thus, CIGS solar cells are also a good option to be used for building-integrated PV (BIPV) systems. The latest cell efficiency record was reached in 2023 with 23.6%. Ongoing research aims to increase efficiency, durability, and cost-effectiveness, making the CIGS thin-film technology a mainstream option for solar energy generation.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flame-impingement-induced superhydrophilicity of soda-lime-silica glass surface
IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-11-29 DOI: 10.1111/ijag.16695
Barsheek Roy, Anne Schmidt, Andreas Rosin, Thorsten Gerdes

The importance of superhydrophilicity of glass surfaces lies in their self-cleaning abilities. The need for antifogging characteristics of soda-lime-silica (SLS-) based window glasses requires feasible solutions. Superhydrophilicity is generally achieved by textured surfaces with suitable features or any chemical modification including thin films. Fabrication of textured surfaces usually involves sophisticated facilities that are often expensive. This paper reveals a novel approach to achieving superhydrophilic SLS surfaces by flame-impingement. The chemical energy of methane gas was converted into thermal energy by a flame torch to reach temperatures just above the softening point of SLS glass. The glass surface was exposed to the flame at a distance of around 100 mm for 10 s. The surface was transformed into a superhydrophilic state with a static contact angle of nearly zero after the treatment. This property was remarkably retained on exposure of the surface to the ambient atmosphere for 3 years of aging. The subsurface structural modifications accountable for the alteration in wetting behavior by the influence of flame-impingement were investigated. High-resolution X-ray photoelectron spectroscopy of the O1s spectral line evidenced the repolymerization of vicinal silanols into bridging oxygens (BOs), accompanied by the loss of hydrous species (SiOH/H2O) in the near-surface region. The repolymerized BOs acted as adsorption sites of water molecules to promote superhydrophilicity. Atomic force microscopy exhibited the conversion of an open silica tetrahedral network with nonbridging oxygens into closed rings. The high surface energy of the residual surface nanostructure at the solid/vapor interface was accountable for the superhydrophilicity.

{"title":"Flame-impingement-induced superhydrophilicity of soda-lime-silica glass surface","authors":"Barsheek Roy,&nbsp;Anne Schmidt,&nbsp;Andreas Rosin,&nbsp;Thorsten Gerdes","doi":"10.1111/ijag.16695","DOIUrl":"https://doi.org/10.1111/ijag.16695","url":null,"abstract":"<p>The importance of superhydrophilicity of glass surfaces lies in their self-cleaning abilities. The need for antifogging characteristics of soda-lime-silica (SLS-) based window glasses requires feasible solutions. Superhydrophilicity is generally achieved by textured surfaces with suitable features or any chemical modification including thin films. Fabrication of textured surfaces usually involves sophisticated facilities that are often expensive. This paper reveals a novel approach to achieving superhydrophilic SLS surfaces by flame-impingement. The chemical energy of methane gas was converted into thermal energy by a flame torch to reach temperatures just above the softening point of SLS glass. The glass surface was exposed to the flame at a distance of around 100 mm for 10 s. The surface was transformed into a superhydrophilic state with a static contact angle of nearly zero after the treatment. This property was remarkably retained on exposure of the surface to the ambient atmosphere for 3 years of aging. The subsurface structural modifications accountable for the alteration in wetting behavior by the influence of flame-impingement were investigated. High-resolution X-ray photoelectron spectroscopy of the O1s spectral line evidenced the repolymerization of vicinal silanols into bridging oxygens (BOs), accompanied by the loss of hydrous species (SiOH/H<sub>2</sub>O) in the near-surface region. The repolymerized BOs acted as adsorption sites of water molecules to promote superhydrophilicity. Atomic force microscopy exhibited the conversion of an open silica tetrahedral network with nonbridging oxygens into closed rings. The high surface energy of the residual surface nanostructure at the solid/vapor interface was accountable for the superhydrophilicity.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16695","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of chemically strengthened glass with varying B2O3/SiO2 ratios using spodumene mineral residue
IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-11-28 DOI: 10.1111/ijag.16697
Yuxin Gu, Fu Wang, Hanzheng Zhu, Guoliang Xu, Qilong Liao, Laibao Liu, Yong Dan, Peng Zhao, Yunxiu Liu

This study pioneers the use of spodumene mineral residue as a primary raw material for producing chemically strengthened glass, addressing concerns related to sustainable waste management. The resulting glasses achieve over 90% transparency at 550 nm, with compressive stress exceeding 1000 MPa and Vickers hardness surpassing 6.6 GPa. As the B2O3/SiO2 ratio increases, the depth of the compressive stress layer (DOL) of the samples shows a trend of initially decreasing and then stabilizing (DOL: 16–24 µm). The compressive stress (CS) of all samples >1000 MPa. Analysis reveals that [BO4] units hinder ion exchanges while [BO3] promote strengthening. Furthermore, as the B2O3/SiO2 ratio increases, the refractive index rises, thermal stability decreases, and density initially increases before decreasing, while the trend for molar volume is opposite to that of density. This study provides a potential application solution for the treatment of spodumene mineral residue, promoting green and circular economic development.

这项研究开创性地将沸石矿物残渣作为生产化学强化玻璃的主要原材料,解决了与可持续废物管理相关的问题。所生产的玻璃在 550 纳米波长下的透明度超过 90%,压应力超过 1000 兆帕,维氏硬度超过 6.6 GPa。随着 B2O3/SiO2 比率的增加,样品的压应力层深度(DOL)呈现出先减小后稳定的趋势(DOL:16-24 µm)。所有样品的压应力(CS)均为 1000 兆帕。分析表明,[BO4] 单元阻碍了离子交换,而[BO3] 则促进了强化。此外,随着 B2O3/SiO2 比值的增加,折射率上升,热稳定性下降,密度先增大后减小,而摩尔体积的变化趋势与密度相反。这项研究为处理霞石矿渣提供了一种潜在的应用解决方案,促进了绿色和循环经济的发展。
{"title":"Preparation of chemically strengthened glass with varying B2O3/SiO2 ratios using spodumene mineral residue","authors":"Yuxin Gu,&nbsp;Fu Wang,&nbsp;Hanzheng Zhu,&nbsp;Guoliang Xu,&nbsp;Qilong Liao,&nbsp;Laibao Liu,&nbsp;Yong Dan,&nbsp;Peng Zhao,&nbsp;Yunxiu Liu","doi":"10.1111/ijag.16697","DOIUrl":"https://doi.org/10.1111/ijag.16697","url":null,"abstract":"<p>This study pioneers the use of spodumene mineral residue as a primary raw material for producing chemically strengthened glass, addressing concerns related to sustainable waste management. The resulting glasses achieve over 90% transparency at 550 nm, with compressive stress exceeding 1000 MPa and Vickers hardness surpassing 6.6 GPa. As the B<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> ratio increases, the depth of the compressive stress layer (DOL) of the samples shows a trend of initially decreasing and then stabilizing (DOL: 16–24 µm). The compressive stress (CS) of all samples &gt;1000 MPa. Analysis reveals that [BO<sub>4</sub>] units hinder ion exchanges while [BO<sub>3</sub>] promote strengthening. Furthermore, as the B<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> ratio increases, the refractive index rises, thermal stability decreases, and density initially increases before decreasing, while the trend for molar volume is opposite to that of density. This study provides a potential application solution for the treatment of spodumene mineral residue, promoting green and circular economic development.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppressing the thermal conduction in glass–ceramic foams by controlling crystallization
IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-11-06 DOI: 10.1111/ijag.16694
Line Thomsen, Yuanzheng Yue, Martin B. Østergaard

Glass-based insulating materials have attracted considerable attention owing to their tailorable properties. It is known that the thermal conductivity of glass ceramics can be greatly influenced by varying their crystallinity. However, the mechanism of such influence in glass–ceramic foams remains poorly understood. In this study, we demonstrate our new findings regarding the correlation between thermal conductivity and crystallinity in silicate glass–ceramic foams. The foams were produced by mixing ZrO2-containing soda-lime glass powder with CaCO3 as foaming agent and foam them using a thermochemical approach. ZrO2 was introduced as a nucleation agent. The crystallinity of the foams was varied by adjusting the heating protocol, i.e., by varying temperature, time, and number of heating cycles. The glass–ceramic foams exhibited relative crystallinities of <30%. The identity of the crystalline phases in the glass–ceramic foams varies with crystallinity. Specifically, cristobalite diminished, but devitrite grew with increasing crystallinity. It was observed that the crystallinity had a nonmonotonic impact on the thermal conductivity of the glass–ceramic foams. The optimum crystallinity for achieving the lowest thermal conductivity was 8–10%, resulting in an approximately 20% lower thermal conductivity compared to noncrystalline. Our findings have implications for the future design of glass–ceramic foams.

{"title":"Suppressing the thermal conduction in glass–ceramic foams by controlling crystallization","authors":"Line Thomsen,&nbsp;Yuanzheng Yue,&nbsp;Martin B. Østergaard","doi":"10.1111/ijag.16694","DOIUrl":"https://doi.org/10.1111/ijag.16694","url":null,"abstract":"<p>Glass-based insulating materials have attracted considerable attention owing to their tailorable properties. It is known that the thermal conductivity of glass ceramics can be greatly influenced by varying their crystallinity. However, the mechanism of such influence in glass–ceramic foams remains poorly understood. In this study, we demonstrate our new findings regarding the correlation between thermal conductivity and crystallinity in silicate glass–ceramic foams. The foams were produced by mixing ZrO<sub>2</sub>-containing soda-lime glass powder with CaCO<sub>3</sub> as foaming agent and foam them using a thermochemical approach. ZrO<sub>2</sub> was introduced as a nucleation agent. The crystallinity of the foams was varied by adjusting the heating protocol, i.e., by varying temperature, time, and number of heating cycles. The glass–ceramic foams exhibited relative crystallinities of &lt;30%. The identity of the crystalline phases in the glass–ceramic foams varies with crystallinity. Specifically, cristobalite diminished, but devitrite grew with increasing crystallinity. It was observed that the crystallinity had a nonmonotonic impact on the thermal conductivity of the glass–ceramic foams. The optimum crystallinity for achieving the lowest thermal conductivity was 8–10%, resulting in an approximately 20% lower thermal conductivity compared to noncrystalline. Our findings have implications for the future design of glass–ceramic foams.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure and ion-exchange properties of transparent glass–ceramics containing Mg2SiO4 crystals 含Mg2SiO4晶体透明微晶玻璃的微观结构和离子交换性能
IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-10-14 DOI: 10.1111/ijag.16693
Kangkang Geng, Yunlan Guo, Chao Liu

Transparent glass–ceramics (GCs) with excellent mechanical properties is a growing demand in the field of optoelectronic devices. In this work, Mg2SiO4 nanocrystals embedded transparent GCs were prepared using the melt-quenching method. The effects of the TiO2 content on the structural and crystallization properties of glass were examined, and the influence of Mg2SiO4 crystallization on the depth of layer (DOL) for K–Na ion-exchange was also investigated. The introduction of TiO2 was advantageous for the enhanced bulk crystallization of Mg2SiO4 nanocrystals within the glass matrix. With an increase in the TiO2 content, the size of Mg2SiO4 nanocrystals decreased, leading to an improvement in the transmittance of the GCs. Crystallization of Mg2SiO4 nanocrystals promoted the increase in Vickers hardness and ion-exchange DOL obviously, and the Vickers hardness can further be improved by ion-exchange. Ion-exchange resulted in the transformation of NaAlSiO4 into KAlSiO4. Results reported here are valuable for the design and preparation of GCs with excellent mechanical and ion-exchange properties.

透明玻璃陶瓷(GCs)具有优异的力学性能,是光电器件领域日益增长的需求。本文采用熔淬法制备了Mg2SiO4纳米晶包埋透明gc。考察了TiO2含量对玻璃结构和结晶性能的影响,以及Mg2SiO4结晶对K-Na离子交换层深(DOL)的影响。TiO2的引入有利于增强Mg2SiO4纳米晶体在玻璃基体内的体晶化。随着TiO2含量的增加,Mg2SiO4纳米晶的尺寸减小,导致gc的透过率提高。Mg2SiO4纳米晶的晶化明显促进了维氏硬度和离子交换DOL的提高,并且离子交换可以进一步提高维氏硬度。离子交换导致NaAlSiO4转化为KAlSiO4。本文的研究结果对设计和制备具有优异力学性能和离子交换性能的gc具有一定的参考价值。
{"title":"Microstructure and ion-exchange properties of transparent glass–ceramics containing Mg2SiO4 crystals","authors":"Kangkang Geng,&nbsp;Yunlan Guo,&nbsp;Chao Liu","doi":"10.1111/ijag.16693","DOIUrl":"https://doi.org/10.1111/ijag.16693","url":null,"abstract":"<p>Transparent glass–ceramics (GCs) with excellent mechanical properties is a growing demand in the field of optoelectronic devices. In this work, Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals embedded transparent GCs were prepared using the melt-quenching method. The effects of the TiO<sub>2</sub> content on the structural and crystallization properties of glass were examined, and the influence of Mg<sub>2</sub>SiO<sub>4</sub> crystallization on the depth of layer (DOL) for K–Na ion-exchange was also investigated. The introduction of TiO<sub>2</sub> was advantageous for the enhanced bulk crystallization of Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals within the glass matrix. With an increase in the TiO<sub>2</sub> content, the size of Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals decreased, leading to an improvement in the transmittance of the GCs. Crystallization of Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals promoted the increase in Vickers hardness and ion-exchange DOL obviously, and the Vickers hardness can further be improved by ion-exchange. Ion-exchange resulted in the transformation of NaAlSiO<sub>4</sub> into KAlSiO<sub>4</sub>. Results reported here are valuable for the design and preparation of GCs with excellent mechanical and ion-exchange properties.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A survey of commercial soda–lime–silica glass compositions: Trends and opportunities I—Compositions, properties and theoretical energy requirements 商业钠-石灰-硅玻璃组合物的调查:趋势和机会i组合物、性质和理论能量需求
IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-10-03 DOI: 10.1111/ijag.16691
Wei Deng, Elliott Wakelin, Erhan Kilinc, Paul A. Bingham

This research aimed to investigate the compositions of commercial soda–lime–silica glasses currently present in the UK market, as there is a lack of recent research on the subject, with the most recent studies now being over 20 years old. This study involved sampling and analyzing the compositions of over 30 commercial soda–lime–silica container and float glass samples, primarily from the UK market, in 2022 to 2023. Based on the results, the characteristics of these commercial glasses has been evaluated using multiple property models and analysis methods. In the first part, we illustrated the opportunities for glass manufacturers to modify or adjust their glass compositions to enable lower melting temperatures, thereby reducing energy demand and fuel carbon emissions. This can help the glass industry meet its net zero carbon emissions targets. It de-risks compositional modifications for a glass manufacturer by highlighting that other manufacturers have already successfully commercially implemented such changes.

本研究旨在调查目前在英国市场上的商用钠石灰硅玻璃的成分,因为缺乏对该主题的最新研究,最近的研究现在已经超过20年了。这项研究涉及取样和分析超过30个商业钠石灰硅容器和浮法玻璃样品的成分,主要来自英国市场,在2022年至2023年。在此基础上,采用多种性能模型和分析方法对这些商品玻璃的特性进行了评价。在第一部分中,我们说明了玻璃制造商修改或调整其玻璃成分以降低熔化温度的机会,从而减少能源需求和燃料碳排放。这可以帮助玻璃行业实现其净零碳排放目标。它通过强调其他制造商已经成功地在商业上实施了这种改变,为玻璃制造商降低了成分修改的风险。
{"title":"A survey of commercial soda–lime–silica glass compositions: Trends and opportunities I—Compositions, properties and theoretical energy requirements","authors":"Wei Deng,&nbsp;Elliott Wakelin,&nbsp;Erhan Kilinc,&nbsp;Paul A. Bingham","doi":"10.1111/ijag.16691","DOIUrl":"https://doi.org/10.1111/ijag.16691","url":null,"abstract":"<p>This research aimed to investigate the compositions of commercial soda–lime–silica glasses currently present in the UK market, as there is a lack of recent research on the subject, with the most recent studies now being over 20 years old. This study involved sampling and analyzing the compositions of over 30 commercial soda–lime–silica container and float glass samples, primarily from the UK market, in 2022 to 2023. Based on the results, the characteristics of these commercial glasses has been evaluated using multiple property models and analysis methods. In the first part, we illustrated the opportunities for glass manufacturers to modify or adjust their glass compositions to enable lower melting temperatures, thereby reducing energy demand and fuel carbon emissions. This can help the glass industry meet its net zero carbon emissions targets. It de-risks compositional modifications for a glass manufacturer by highlighting that other manufacturers have already successfully commercially implemented such changes.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16691","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-glare performance of sol-gel-derived spray coatings prepared with various water-to-alkoxide ratios 不同水醇比制备的溶胶-凝胶衍生喷涂涂料的防眩光性能
IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-10-01 DOI: 10.1111/ijag.16692
Toshiyuki Kajioka, Koji Ikegami, Toshimasa Kanai, Hiromitsu Kozuka

We fabricated anti-glare (AG) coatings on glass sheets by spraying alkoxide-derived silica sols and demonstrated that the water-to-alkoxide ratio is one of the key factors for improving AG performance and sol stability. We synthesized silica sols using tetraethylorthosilicate (TEOS), water, nitric acid, and denatured ethanol and sprayed them on sheets of chemically strengthened glass. The molar ratios of water to TEOS (r) were 3, 7, and 14. The sol with r = 7 provided a higher arithmetic-mean height (Sa), smaller autocorrelation length (Sal), and better optical properties (lower gloss, higher haze, and lower sparkle level) than the sol with r = 3. An excessive amount of water at r = 14 yielded a large Sal and a high sparkle level. As the storage time of the sols increased, higher r values caused a more pronounced increase in Sa. Although none of the sols showed noticeable temporal changes during dynamic light scattering measurements, solutions with higher r values exhibited a more remarkable reduction in the retention time during liquid chromatography with a styrene-divinylbenzene matrix. Hence, an excessive amount of water was thought to cause hydrophilization of the polymerized species during storage.

通过喷涂烷氧基硅溶胶在玻璃板上制备防眩光涂层,并证明了水与醇氧基硅溶胶的比例是提高防眩光涂层性能和稳定性的关键因素之一。我们用四乙基硅酸盐(TEOS)、水、硝酸和变性乙醇合成了二氧化硅溶胶,并将它们喷在化学强化玻璃上。水与正硅酸盐的摩尔比(r)分别为3、7和14。与r = 3的溶胶相比,r = 7的溶胶具有更高的算术平均高度(Sa)、更小的自相关长度(Sal)和更好的光学性能(更低的光泽度、更高的雾度和更低的闪光水平)。在r = 14时过量的水会产生较大的Sal和较高的闪光水平。随着贮藏时间的延长,r值越高,Sa的增加越明显。虽然在动态光散射测量中,没有一种溶胶显示出明显的时间变化,但在用苯乙烯-二乙烯基苯基质进行液相色谱时,较高r值的溶液显示出更显著的保留时间减少。因此,过量的水被认为是在储存过程中引起聚合物种的亲水性。
{"title":"Anti-glare performance of sol-gel-derived spray coatings prepared with various water-to-alkoxide ratios","authors":"Toshiyuki Kajioka,&nbsp;Koji Ikegami,&nbsp;Toshimasa Kanai,&nbsp;Hiromitsu Kozuka","doi":"10.1111/ijag.16692","DOIUrl":"https://doi.org/10.1111/ijag.16692","url":null,"abstract":"<p>We fabricated anti-glare (AG) coatings on glass sheets by spraying alkoxide-derived silica sols and demonstrated that the water-to-alkoxide ratio is one of the key factors for improving AG performance and sol stability. We synthesized silica sols using tetraethylorthosilicate (TEOS), water, nitric acid, and denatured ethanol and sprayed them on sheets of chemically strengthened glass. The molar ratios of water to TEOS (r) were 3, 7, and 14. The sol with r = 7 provided a higher arithmetic-mean height (Sa), smaller autocorrelation length (Sal), and better optical properties (lower gloss, higher haze, and lower sparkle level) than the sol with r = 3. An excessive amount of water at r = 14 yielded a large Sal and a high sparkle level. As the storage time of the sols increased, higher r values caused a more pronounced increase in Sa. Although none of the sols showed noticeable temporal changes during dynamic light scattering measurements, solutions with higher r values exhibited a more remarkable reduction in the retention time during liquid chromatography with a styrene-divinylbenzene matrix. Hence, an excessive amount of water was thought to cause hydrophilization of the polymerized species during storage.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enthalpy relaxation of sodium aluminosilicate glasses from thermal analysis 热分析中铝硅酸钠玻璃的焓弛豫
IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-25 DOI: 10.1111/ijag.16688
Brittney M. Hauke, John C. Mauro

The sodium aluminosilicate (NAS) glass family is important for many different industrial applications, but glass relaxation has not yet been thoroughly studied in this system. Thermal analysis techniques such as differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) can provide insight into the enthalpy relaxation of glass by measuring the glass transition temperature (Tg), activation energy, and enthalpy of relaxation. MDSC is mostly used to study nonoxide and low Tg glasses, and there is much debate about whether the nonreversing heat flow analysis method is accurate. To the authors’ knowledge, this is the first paper using MDSC to study these NAS compositions, and one of few papers to report MDSC on high Tg oxide glasses. We report on one set of modulation conditions that obtain a linear response using Lissajous curves, as well as comparing the activation energy calculated from DSC with the enthalpy of relaxation obtained from MDSC. Our results show that the activation energy and enthalpy of relaxation do not give the same compositional minimum in relaxation, and therefore more work is needed to investigate the validity of the nonreversing heat flow approach for high Tg oxide glasses.

铝硅酸钠(NAS)玻璃家族在许多不同的工业应用中都很重要,但在该体系中玻璃弛豫尚未得到深入的研究。热分析技术如差示扫描量热法(DSC)和调制差示扫描量热法(MDSC)可以通过测量玻璃转变温度(Tg)、活化能和弛豫焓来深入了解玻璃的焓弛豫。MDSC主要用于非氧化玻璃和低Tg玻璃的研究,对于非可逆热流分析方法是否准确存在很多争论。据作者所知,这是第一篇使用MDSC研究这些NAS组成的论文,也是少数报道MDSC研究高Tg氧化玻璃的论文之一。我们报道了一组利用Lissajous曲线获得线性响应的调制条件,并将DSC计算的活化能与MDSC计算的松弛焓进行了比较。我们的结果表明,活化能和弛豫焓并没有给出相同的组分弛豫最小值,因此需要更多的工作来研究非逆转热流方法对高Tg氧化玻璃的有效性。
{"title":"Enthalpy relaxation of sodium aluminosilicate glasses from thermal analysis","authors":"Brittney M. Hauke,&nbsp;John C. Mauro","doi":"10.1111/ijag.16688","DOIUrl":"https://doi.org/10.1111/ijag.16688","url":null,"abstract":"<p>The sodium aluminosilicate (NAS) glass family is important for many different industrial applications, but glass relaxation has not yet been thoroughly studied in this system. Thermal analysis techniques such as differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) can provide insight into the enthalpy relaxation of glass by measuring the glass transition temperature (<i>T</i><sub>g</sub>), activation energy, and enthalpy of relaxation. MDSC is mostly used to study nonoxide and low <i>T</i><sub>g</sub> glasses, and there is much debate about whether the nonreversing heat flow analysis method is accurate. To the authors’ knowledge, this is the first paper using MDSC to study these NAS compositions, and one of few papers to report MDSC on high <i>T</i><sub>g</sub> oxide glasses. We report on one set of modulation conditions that obtain a linear response using Lissajous curves, as well as comparing the activation energy calculated from DSC with the enthalpy of relaxation obtained from MDSC. Our results show that the activation energy and enthalpy of relaxation do not give the same compositional minimum in relaxation, and therefore more work is needed to investigate the validity of the nonreversing heat flow approach for high <i>T</i><sub>g</sub> oxide glasses.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16688","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Applied Glass Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1