Hom N. Dhakal, Sakib Hossain Khan, Ibrahim A. Alnaser, Mohammad Rezaul Karim, Abu Saifullah, Zhongyi Zhang
{"title":"Potential of Date Palm Fibers (DPFs) as a Sustainable Reinforcement for Bio- Composites and its Property Enhancement for Key Applications: A Review","authors":"Hom N. Dhakal, Sakib Hossain Khan, Ibrahim A. Alnaser, Mohammad Rezaul Karim, Abu Saifullah, Zhongyi Zhang","doi":"10.1002/mame.202400081","DOIUrl":null,"url":null,"abstract":"<p>This article presents a comprehensive review of the advancements in the use of Date Palm Fiber (DPF) reinforced composites, highlighting their mechanical, thermal, and morphological properties and the enhancements achieved through various modification techniques. Date palm fibers, a sustainable and biodegradable resource, have garnered significant interest due to their potential in reducing environmental impact across several key industries, including building and construction, automotive, and packaging. The review discusses the effects of hybrid approaches and physical and chemical treatments on the mechanical properties of DPF composites, demonstrating improvements in tensile strength, elasticity, and flexural strength through optimized fiber-matrix bonding and reduced moisture absorption. Thermal behavior analyses through Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), and thermal conductivity underscore the composites’ suitability for applications requiring high thermal stability and conductivity for insulation applications. Morphological studies reveal that surface-treated fibers integrate more effectively with various polymeric matrices, leading to enhanced composite performance. The practical applications of DPF composites are explored, emphasizing their role in promoting sustainable manufacturing practices. Challenges such as scalability, cost-efficiency, and performance consistency are addressed, alongside future perspectives that suggest a promising direction for further research and technological development in the field of natural fiber composites. This review aims to solidify the foundation for ongoing advancements and increase the adoption of DPF composites in commercial applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400081","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400081","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a comprehensive review of the advancements in the use of Date Palm Fiber (DPF) reinforced composites, highlighting their mechanical, thermal, and morphological properties and the enhancements achieved through various modification techniques. Date palm fibers, a sustainable and biodegradable resource, have garnered significant interest due to their potential in reducing environmental impact across several key industries, including building and construction, automotive, and packaging. The review discusses the effects of hybrid approaches and physical and chemical treatments on the mechanical properties of DPF composites, demonstrating improvements in tensile strength, elasticity, and flexural strength through optimized fiber-matrix bonding and reduced moisture absorption. Thermal behavior analyses through Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), and thermal conductivity underscore the composites’ suitability for applications requiring high thermal stability and conductivity for insulation applications. Morphological studies reveal that surface-treated fibers integrate more effectively with various polymeric matrices, leading to enhanced composite performance. The practical applications of DPF composites are explored, emphasizing their role in promoting sustainable manufacturing practices. Challenges such as scalability, cost-efficiency, and performance consistency are addressed, alongside future perspectives that suggest a promising direction for further research and technological development in the field of natural fiber composites. This review aims to solidify the foundation for ongoing advancements and increase the adoption of DPF composites in commercial applications.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.