CAVACHON: a hierarchical variational autoencoder to integrate multi-modal single-cell data

Ping-Han Hsieh, Ru-Xiu Hsiao, Katalin Ferenc, Anthony Mathelier, Rebekka Burkholz, Chien-Yu Chen, Geir Kjetil Sandve, Tatiana Belova, Marieke Lydia Kuijjer
{"title":"CAVACHON: a hierarchical variational autoencoder to integrate multi-modal single-cell data","authors":"Ping-Han Hsieh, Ru-Xiu Hsiao, Katalin Ferenc, Anthony Mathelier, Rebekka Burkholz, Chien-Yu Chen, Geir Kjetil Sandve, Tatiana Belova, Marieke Lydia Kuijjer","doi":"arxiv-2405.18655","DOIUrl":null,"url":null,"abstract":"Paired single-cell sequencing technologies enable the simultaneous\nmeasurement of complementary modalities of molecular data at single-cell\nresolution. Along with the advances in these technologies, many methods based\non variational autoencoders have been developed to integrate these data.\nHowever, these methods do not explicitly incorporate prior biological\nrelationships between the data modalities, which could significantly enhance\nmodeling and interpretation. We propose a novel probabilistic learning\nframework that explicitly incorporates conditional independence relationships\nbetween multi-modal data as a directed acyclic graph using a generalized\nhierarchical variational autoencoder. We demonstrate the versatility of our\nframework across various applications pertinent to single-cell multi-omics data\nintegration. These include the isolation of common and distinct information\nfrom different modalities, modality-specific differential analysis, and\nintegrated cell clustering. We anticipate that the proposed framework can\nfacilitate the construction of highly flexible graphical models that can\ncapture the complexities of biological hypotheses and unravel the connections\nbetween different biological data types, such as different modalities of paired\nsingle-cell multi-omics data. The implementation of the proposed framework can\nbe found in the repository https://github.com/kuijjerlab/CAVACHON.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Paired single-cell sequencing technologies enable the simultaneous measurement of complementary modalities of molecular data at single-cell resolution. Along with the advances in these technologies, many methods based on variational autoencoders have been developed to integrate these data. However, these methods do not explicitly incorporate prior biological relationships between the data modalities, which could significantly enhance modeling and interpretation. We propose a novel probabilistic learning framework that explicitly incorporates conditional independence relationships between multi-modal data as a directed acyclic graph using a generalized hierarchical variational autoencoder. We demonstrate the versatility of our framework across various applications pertinent to single-cell multi-omics data integration. These include the isolation of common and distinct information from different modalities, modality-specific differential analysis, and integrated cell clustering. We anticipate that the proposed framework can facilitate the construction of highly flexible graphical models that can capture the complexities of biological hypotheses and unravel the connections between different biological data types, such as different modalities of paired single-cell multi-omics data. The implementation of the proposed framework can be found in the repository https://github.com/kuijjerlab/CAVACHON.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CAVACHON:用于整合多模态单细胞数据的分层变异自动编码器
配对单细胞测序技术可在单细胞分辨率下同时测量互补模式的分子数据。然而,这些方法并没有明确纳入数据模态之间的先验生物学关系,而这种关系可以显著提高建模和解释能力。我们提出了一种新颖的概率学习框架,利用广义层次变异自动编码器将多模态数据之间的条件独立性关系明确纳入有向无环图。我们在与单细胞多组学数据整合相关的各种应用中展示了我们的框架的多功能性。这些应用包括从不同模式中分离出共同和不同的信息、特定模式的差异分析以及整合细胞聚类。我们预计,所提出的框架将有助于构建高度灵活的图形模型,从而捕捉复杂的生物假设,并揭示不同生物数据类型(如不同模式的单细胞多组学数据)之间的联系。拟议框架的实现可在 https://github.com/kuijjerlab/CAVACHON 存储库中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1