Jianfei Wang, Jiao Suo, Hongyu Zhang, Mingyan Gao, Ri Liu, Liang Cao, Keer Wang, Roy Vellaisamy, Kremena Makasheva, Xinge Yu, Shan Cecilia Cao, Wen Jung Li, Zuobin Wang
{"title":"A Highly Sensitive Self-Assembled-Nanoparticles e-Skin Sensor for Controlling Avatar Facial Micro-Expressions","authors":"Jianfei Wang, Jiao Suo, Hongyu Zhang, Mingyan Gao, Ri Liu, Liang Cao, Keer Wang, Roy Vellaisamy, Kremena Makasheva, Xinge Yu, Shan Cecilia Cao, Wen Jung Li, Zuobin Wang","doi":"10.1002/admt.202302211","DOIUrl":null,"url":null,"abstract":"<p>With their unique electrical, mechanical, and surface properties, gold nanoparticles (AuNPs) open up new possibilities for sensor technology. In particular, conductive thin films constructed from ligand-stabilized AuNPs are considered an ideal sensing platform due to their high surface area, excellent conductivity, and biocompatibility. However, most methods for making conductive AuNPs thin-film sensors with excellent sensitivity require expensive equipment. In this work, an innovative resistive strain sensor consisting of AuNPs and poly (allylamine hydrochloride) (PAH) based on the mutual adsorption of positive and negative charges using a low-cost layer-by-layer self-assembly (LBL-SA) approach on a flexible polyester substrate is developed. The conductance changes at low temperatures of the AuNPs/PAH agree with the Arrhenius-type activation of charge transport. Additionally, the maximum gauge factor of the sensor is shown experimentally to be ≈656 when 1% strain is applied to the sensor film. This work demonstrates that the sensor detects body motions, eyeball movements, and facial micro-expressions. For detecting eyeball movements and facial micro-expressions, the macro-recall can reach 91.5% and 98.8%. Simultaneously, the sensor can control the virtual avatar's eye movements and human facial micro-expressions in VR. Therefore, nanoparticle-based sensors can be extensively used in future applications related to healthcare and human-computer interaction.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302211","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With their unique electrical, mechanical, and surface properties, gold nanoparticles (AuNPs) open up new possibilities for sensor technology. In particular, conductive thin films constructed from ligand-stabilized AuNPs are considered an ideal sensing platform due to their high surface area, excellent conductivity, and biocompatibility. However, most methods for making conductive AuNPs thin-film sensors with excellent sensitivity require expensive equipment. In this work, an innovative resistive strain sensor consisting of AuNPs and poly (allylamine hydrochloride) (PAH) based on the mutual adsorption of positive and negative charges using a low-cost layer-by-layer self-assembly (LBL-SA) approach on a flexible polyester substrate is developed. The conductance changes at low temperatures of the AuNPs/PAH agree with the Arrhenius-type activation of charge transport. Additionally, the maximum gauge factor of the sensor is shown experimentally to be ≈656 when 1% strain is applied to the sensor film. This work demonstrates that the sensor detects body motions, eyeball movements, and facial micro-expressions. For detecting eyeball movements and facial micro-expressions, the macro-recall can reach 91.5% and 98.8%. Simultaneously, the sensor can control the virtual avatar's eye movements and human facial micro-expressions in VR. Therefore, nanoparticle-based sensors can be extensively used in future applications related to healthcare and human-computer interaction.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.