A review of pullulan nanopolymer derived from agro-food waste and its applications

IF 2.4 3区 化学 Q3 POLYMER SCIENCE Iranian Polymer Journal Pub Date : 2024-05-31 DOI:10.1007/s13726-024-01338-1
Richa Prasad Mahato, Saurabh Kumar
{"title":"A review of pullulan nanopolymer derived from agro-food waste and its applications","authors":"Richa Prasad Mahato, Saurabh Kumar","doi":"10.1007/s13726-024-01338-1","DOIUrl":null,"url":null,"abstract":"<p>Pullulan is a microbial exopolysaccharide hydrogel biopolymer that is biodegradable, renewable, and environmentally friendly. However, to meet the demands of the utilization, it is still necessary to enhance the yield and molecular characteristics of pullulan formed by different strains. Available in powder form, pullulan enhances the benefits of this natural material when combined with nanoparticles (NPs) and synthesized into pullulan NPs. NPs are gaining attention as a cutting-edge technology in the fields of pharmaceuticals, medicine, food, agriculture processing, and packaging. Pullulan biopolymers provide an environmentally friendly solution that effectively addresses the world's waste disposal issue by removing untreated waste from the agro-food industries and using this waste as a potential substrate for pullulan biosynthesis. Nowadays, pullulan in the form of NPs, nanocomposites, and nanoformulation has become increasingly popular because of their specific application needs with enhanced molecular properties like strength, durability, electrical conductivity, and catalytic activity. This approach offers a valuable product called pullulan-based nanopolymer, which holds promise in various industries. Pullulan with the highest yield capacity to date has the potential to significantly decrease production costs and increase applicability range. This review provides detailed insights into the latest methods for extracting pullulan biopolymers from agricultural and food waste materials in the form of polysaccharides. Moreover, the article covers the synthesis of various types of pullulan-based nanoparticles, nanocomposites, and nanoformulations. Furthermore, it delves into the diverse applications of these pullulan nanopolymers across agriculture, food and medical sectors.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s13726-024-01338-1","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Pullulan is a microbial exopolysaccharide hydrogel biopolymer that is biodegradable, renewable, and environmentally friendly. However, to meet the demands of the utilization, it is still necessary to enhance the yield and molecular characteristics of pullulan formed by different strains. Available in powder form, pullulan enhances the benefits of this natural material when combined with nanoparticles (NPs) and synthesized into pullulan NPs. NPs are gaining attention as a cutting-edge technology in the fields of pharmaceuticals, medicine, food, agriculture processing, and packaging. Pullulan biopolymers provide an environmentally friendly solution that effectively addresses the world's waste disposal issue by removing untreated waste from the agro-food industries and using this waste as a potential substrate for pullulan biosynthesis. Nowadays, pullulan in the form of NPs, nanocomposites, and nanoformulation has become increasingly popular because of their specific application needs with enhanced molecular properties like strength, durability, electrical conductivity, and catalytic activity. This approach offers a valuable product called pullulan-based nanopolymer, which holds promise in various industries. Pullulan with the highest yield capacity to date has the potential to significantly decrease production costs and increase applicability range. This review provides detailed insights into the latest methods for extracting pullulan biopolymers from agricultural and food waste materials in the form of polysaccharides. Moreover, the article covers the synthesis of various types of pullulan-based nanoparticles, nanocomposites, and nanoformulations. Furthermore, it delves into the diverse applications of these pullulan nanopolymers across agriculture, food and medical sectors.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综述从农业食品废弃物中提取的纤维素纳米聚合物及其应用
普鲁兰是一种微生物外多糖水凝胶生物聚合物,具有生物降解性、可再生性和环保性。然而,为了满足利用需求,仍有必要提高不同菌株形成的普鲁兰的产量和分子特性。拉鲁兰以粉末形式存在,当与纳米颗粒(NPs)结合并合成为拉鲁兰 NPs 时,可提高这种天然材料的效益。作为制药、医药、食品、农业加工和包装领域的尖端技术,纳米粒子正日益受到关注。拉普兰生物聚合物提供了一种环境友好型解决方案,通过清除农业食品工业中未经处理的废物,并利用这些废物作为拉普兰生物合成的潜在底物,有效解决了世界废物处理问题。如今,由于其特定的应用需求,以 NPs、纳米复合材料和纳米制剂形式存在的具有增强的分子特性(如强度、耐久性、导电性和催化活性)的拉胶已变得越来越受欢迎。这种方法提供了一种名为 "基于普鲁兰的纳米聚合物 "的宝贵产品,在各行各业中大有可为。迄今为止产量最高的普鲁兰具有显著降低生产成本和扩大应用范围的潜力。本综述详细介绍了以多糖形式从农业和食品废料中提取拉普兰生物聚合物的最新方法。此外,文章还介绍了各种类型的基于拉普兰的纳米颗粒、纳米复合材料和纳米制剂的合成。此外,文章还深入探讨了这些拉普兰纳米聚合物在农业、食品和医疗领域的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Polymer Journal
Iranian Polymer Journal 化学-高分子科学
CiteScore
4.90
自引率
9.70%
发文量
107
审稿时长
2.8 months
期刊介绍: Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.
期刊最新文献
Physio-mechanical and thermal characteristics of Mimosa pudica microfibers impregnated novel PLA biocomposite Influence of nucleating agent on the mechanical and thermal properties of neat isotactic polypropylene/reprocessed polypropylene blends Effects of date seed and graphite fillers on the mechanical and thermal properties of vinyl ester matrix composites Advances in hyperbranched polymer chemistry Investigating metal injection molding of 4605 low-alloy steel powder-polymer mixture: parametric optimization of the injection stage using RSM technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1