Comprehensive voltage-loss analysis and reduction of radiative recombination voltage loss in quantum-structured solar cells

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-05-30 DOI:10.1016/j.solmat.2024.112957
Meita Asami , Maui Hino , Gan Li , Kentaroh Watanabe , Yoshiaki Nakano , Masakazu Sugiyama
{"title":"Comprehensive voltage-loss analysis and reduction of radiative recombination voltage loss in quantum-structured solar cells","authors":"Meita Asami ,&nbsp;Maui Hino ,&nbsp;Gan Li ,&nbsp;Kentaroh Watanabe ,&nbsp;Yoshiaki Nakano ,&nbsp;Masakazu Sugiyama","doi":"10.1016/j.solmat.2024.112957","DOIUrl":null,"url":null,"abstract":"<div><p>Voltage-loss analysis is essential in the development of next-generation solar cells, such as perovskite, chalcopyrite, kesterite, and nano/quantum-structured solar cells. Voltage-loss analysis provides valuable insights into how the energy conversion efficiency of solar cells can be enhanced. However, a comprehensive and accurate method to evaluate the voltage loss in quantum-structured solar cells is lacking. This study establishes and demonstrates a quantitative voltage-loss analysis based on detailed balance theory. This analysis reveals the relationship between external quantum efficiency and radiative recombination voltage loss in quantum-structured solar cells. Based on the results of the analysis, we designed and fabricated a novel low-voltage loss quantum-structured solar cell. Radiative recombination in the quantum-structured solar cell was successfully suppressed by steepening the absorption edge. This voltage-loss analysis facilitates the development of next-generation solar cells.</p></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927024824002691/pdfft?md5=92d0ae18309688c2ccc39504a093d3c2&pid=1-s2.0-S0927024824002691-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824002691","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage-loss analysis is essential in the development of next-generation solar cells, such as perovskite, chalcopyrite, kesterite, and nano/quantum-structured solar cells. Voltage-loss analysis provides valuable insights into how the energy conversion efficiency of solar cells can be enhanced. However, a comprehensive and accurate method to evaluate the voltage loss in quantum-structured solar cells is lacking. This study establishes and demonstrates a quantitative voltage-loss analysis based on detailed balance theory. This analysis reveals the relationship between external quantum efficiency and radiative recombination voltage loss in quantum-structured solar cells. Based on the results of the analysis, we designed and fabricated a novel low-voltage loss quantum-structured solar cell. Radiative recombination in the quantum-structured solar cell was successfully suppressed by steepening the absorption edge. This voltage-loss analysis facilitates the development of next-generation solar cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子结构太阳能电池的全面电压损耗分析和辐射重组电压损耗的降低
电压损耗分析对于下一代太阳能电池(如过氧化物太阳能电池、黄铜矿太阳能电池、钾长石太阳能电池和纳米/量子结构太阳能电池)的开发至关重要。电压损失分析为如何提高太阳能电池的能量转换效率提供了宝贵的见解。然而,目前还缺乏一种全面而准确的方法来评估量子结构太阳能电池的电压损失。本研究以详细的平衡理论为基础,建立并演示了一种定量电压损失分析方法。该分析揭示了量子结构太阳能电池中外部量子效率与辐射重组电压损失之间的关系。根据分析结果,我们设计并制造了一种新型低电压损耗量子结构太阳能电池。通过使吸收边陡峭化,成功抑制了量子结构太阳能电池中的辐射重组。这种电压损耗分析有助于下一代太阳能电池的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Investigation of a solar-assisted methanol steam reforming system: Operational factor screening and computational fluid dynamics data-driven prediction A high effciency (11.06 %) CZTSSe solar cell achieved by combining Ag doping in absorber and BxCd1-xs/caztsse heterojunction annealing Multifunctional daytime radiative cooler resistant to UV aging Generic strategy to prepare PPy-based nanocomposites for efficient and stable interfacial solar desalination with excellent salt-rejecting performance Soiling, cleaning, and abrasion: The results of the 5-year photovoltaic glass coating field study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1