Regulation to Ag–Al spikes through silver aluminum paste with Al–Si alloy

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-05-31 DOI:10.1016/j.solmat.2024.112968
Guoguang Xing , Wei Chen , Yaoping Liu , Xiaolong Du
{"title":"Regulation to Ag–Al spikes through silver aluminum paste with Al–Si alloy","authors":"Guoguang Xing ,&nbsp;Wei Chen ,&nbsp;Yaoping Liu ,&nbsp;Xiaolong Du","doi":"10.1016/j.solmat.2024.112968","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that metallization of Ag–Al pastes to boron doped emitter of N-type solar cells will reduce contact resistance, because Al will promote forming Ag–Al spikes, providing conductive channels. However, deeper Ag–Al spikes will exacerbate metal recombination and deteriorate cell performance, thus requiring regulation. It has been reported that adding Si to Ag–Al pastes could effectively limit the formation of Ag–Al spikes, but it will increase grid line resistance and reduce conductivity. Based on this, we prepared new Ag–Al pastes using Al–Si alloys, which effectively regulated Ag–Al spikes and ensured electrical properties. In addition, we comprehensively compared the contact properties of conventional Ag–Al pastes, Ag–Al pastes with added Si, and Al–Si alloy pastes. The results indicated that conventional Ag–Al pastes have lower contact potential barriers and better contact performance, but Ag–Al spikes are difficult to control. Adding Si to Ag–Al pastes effectively limited the formation of spikes, but it will significantly increase potential barriers and deteriorate electrical performance. By contrast, using Al–Si alloys can not only achieve comprehensive regulation of the size and composition of Ag–Al spikes, but also ensure good electrical performance. This study developed Al–Si alloy pastes with great potential for application, which were of great significance for regulation of Ag–Al spikes and the development of advanced Ag–Al pastes.</p></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824002800","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that metallization of Ag–Al pastes to boron doped emitter of N-type solar cells will reduce contact resistance, because Al will promote forming Ag–Al spikes, providing conductive channels. However, deeper Ag–Al spikes will exacerbate metal recombination and deteriorate cell performance, thus requiring regulation. It has been reported that adding Si to Ag–Al pastes could effectively limit the formation of Ag–Al spikes, but it will increase grid line resistance and reduce conductivity. Based on this, we prepared new Ag–Al pastes using Al–Si alloys, which effectively regulated Ag–Al spikes and ensured electrical properties. In addition, we comprehensively compared the contact properties of conventional Ag–Al pastes, Ag–Al pastes with added Si, and Al–Si alloy pastes. The results indicated that conventional Ag–Al pastes have lower contact potential barriers and better contact performance, but Ag–Al spikes are difficult to control. Adding Si to Ag–Al pastes effectively limited the formation of spikes, but it will significantly increase potential barriers and deteriorate electrical performance. By contrast, using Al–Si alloys can not only achieve comprehensive regulation of the size and composition of Ag–Al spikes, but also ensure good electrical performance. This study developed Al–Si alloy pastes with great potential for application, which were of great significance for regulation of Ag–Al spikes and the development of advanced Ag–Al pastes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过银铝浆与铝硅合金对银铝尖晶石进行调节
众所周知,将银铝浆料金属化到 N 型太阳能电池的掺硼发射极上会降低接触电阻,因为铝会促进形成银铝尖峰,提供导电通道。但是,较深的银铝尖峰会加剧金属重组,降低电池性能,因此需要进行调节。有报道称,在银铝浆料中添加硅可以有效限制银铝尖峰的形成,但会增加栅线电阻,降低导电率。在此基础上,我们使用 Al-Si 合金制备了新型银铝浆,有效地调节了银铝尖峰的形成,并确保了电气性能。此外,我们还全面比较了传统银铝浆、添加了硅的银铝浆和铝硅合金浆的接触性能。结果表明,传统的银铝浆具有更低的接触电位势垒和更好的接触性能,但银铝尖峰难以控制。在银铝浆料中添加硅能有效限制尖峰的形成,但会显著增加电位势垒并降低电气性能。相比之下,使用 Al-Si 合金不仅可以实现对银铝尖峰大小和成分的全面调节,还能确保良好的电气性能。这项研究开发出了具有巨大应用潜力的 Al-Si 合金浆料,对调节银铝尖峰和开发先进的银铝浆料具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Investigation of a solar-assisted methanol steam reforming system: Operational factor screening and computational fluid dynamics data-driven prediction A high effciency (11.06 %) CZTSSe solar cell achieved by combining Ag doping in absorber and BxCd1-xs/caztsse heterojunction annealing Multifunctional daytime radiative cooler resistant to UV aging Generic strategy to prepare PPy-based nanocomposites for efficient and stable interfacial solar desalination with excellent salt-rejecting performance Soiling, cleaning, and abrasion: The results of the 5-year photovoltaic glass coating field study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1