{"title":"Predation, but not herbivory, declines with elevation in a tropical rainforest","authors":"B. E. L. Barlow, A. Nakamura, L. A. Ashton","doi":"10.1007/s42965-024-00346-9","DOIUrl":null,"url":null,"abstract":"<p>Naturally, insect herbivore populations are controlled by their plant hosts and predators. These ‘bottom-up’ and ‘top-down’ controls influence leaf area lost to herbivory. Bottom-up control of herbivory may be driven by leaf nutrients and plant defences. Top-down control can be driven by abundance and species richness of natural enemies, host or prey specificity, and predation strategies (e.g., active searching or sit-and-wait ‘ambush’ predation). The relative importance of bottom-up and top-down controls is unresolved but likely to vary spatially and temporally and under different environmental conditions such as changing temperature. We surveyed leaf carbon and nitrogen, leaf area loss, and attacks on plasticine caterpillars across a tropical elevational gradient in Xishuangbanna, Yunnan Provence, China. We show that predatory foraging activity decreases with elevation and temperature, whereas leaf nutrients and leaf area loss from herbivory remains more or less constant. Predation patterns were driven by ants, which are thermophiles and therefore more active, abundant, and diverse at warmer, lower elevations. Leaf nutritional values are important in driving herbivory patterns as herbivory was stable across this gradient, but other factors such as mechanical defences and herbivore-induced plant volatiles demand further study. Elevational studies provide insight into how ecosystem function will shift under climate change. As increasing temperatures following climate change allows predatory groups like ants to exploit higher elevations, top-down control in high elevation habitats could increase, resulting in re-wiring of these ecologically sensitive communities. At the same time, top-down control at lower elevations may be at risk if critical thermal maxima for natural enemies are exceeded.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42965-024-00346-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Naturally, insect herbivore populations are controlled by their plant hosts and predators. These ‘bottom-up’ and ‘top-down’ controls influence leaf area lost to herbivory. Bottom-up control of herbivory may be driven by leaf nutrients and plant defences. Top-down control can be driven by abundance and species richness of natural enemies, host or prey specificity, and predation strategies (e.g., active searching or sit-and-wait ‘ambush’ predation). The relative importance of bottom-up and top-down controls is unresolved but likely to vary spatially and temporally and under different environmental conditions such as changing temperature. We surveyed leaf carbon and nitrogen, leaf area loss, and attacks on plasticine caterpillars across a tropical elevational gradient in Xishuangbanna, Yunnan Provence, China. We show that predatory foraging activity decreases with elevation and temperature, whereas leaf nutrients and leaf area loss from herbivory remains more or less constant. Predation patterns were driven by ants, which are thermophiles and therefore more active, abundant, and diverse at warmer, lower elevations. Leaf nutritional values are important in driving herbivory patterns as herbivory was stable across this gradient, but other factors such as mechanical defences and herbivore-induced plant volatiles demand further study. Elevational studies provide insight into how ecosystem function will shift under climate change. As increasing temperatures following climate change allows predatory groups like ants to exploit higher elevations, top-down control in high elevation habitats could increase, resulting in re-wiring of these ecologically sensitive communities. At the same time, top-down control at lower elevations may be at risk if critical thermal maxima for natural enemies are exceeded.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.