{"title":"Predicting the current and future potential habitat of Taxus species over Indian Himalayan Region using MaxEnt model","authors":"Aishwarya Rajlaxmi, Amit Chawla, Manoj Kumar","doi":"10.1007/s42965-024-00365-6","DOIUrl":null,"url":null,"abstract":"<p>The Himalayan region harbours a rich biodiversity, with <i>Taxus wallichiana</i> and <i>Taxus contorta</i> (<i>Taxus</i> species) are playing a significant role in its flora. A study was conducted to ascertain the potential range of these plant species in the Indian Himalayan Region by synthesizing species distribution models using MaxEnt for different climate change scenarios. The geocoordinates of <i>Taxus</i> species populations were obtained from various sources, including field visits, scientific literature, and the Global Biodiversity and Information Facility web portal to run the model and the two species were segregated according to their geographic range. Further, the environmental predictors of current and future climate scenarios of four Shared Socioeconomic Pathways (SSP126, SSP345, SSP370, SSP585) were obtained from the WorldClim web portal. The Jackknife test and ROC analysis were used to validate the model. The projected map showed Arunachal Pradesh, Sikkim, Manipur for <i>T. wallichiana</i> under the current climate scenario and Himachal Pradesh, Uttarakhand, and some parts of Jammu & Kashmir as potential distribution regions for <i>T. contorta</i>. In future scenarios, the high potential area for this species decreased the most in 2050s of SSP126 to 4,960.4 km<sup>2</sup> for <i>T. wallichiana</i> and corresponding maximum decrease for <i>T. contorta</i> was SSP345 to 6,866.7 km<sup>2</sup> in 2050s; which were however found to be increased the most in 2070s for <i>T. wallichiana</i>, i.e. up to 14,693.5 km<sup>2</sup> (SSP585) and for <i>T. contorta</i>, an increase of 11,060.69 km<sup>2</sup> in 2100s (SSP126). The Jackknife test indicated that the climatic variable, Srad 5 and BIO 17 exerted the largest influence on the generated model of the current potential distribution of <i>T. wallichiana</i> and <i>T. contorta</i> respectively. The research findings are significant as they provide insights into the potential range of <i>Taxus</i> species and can help develop conservation and sustainable management strategies for the unique biodiversity of the region.</p>","PeriodicalId":54410,"journal":{"name":"Tropical Ecology","volume":"4 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42965-024-00365-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Himalayan region harbours a rich biodiversity, with Taxus wallichiana and Taxus contorta (Taxus species) are playing a significant role in its flora. A study was conducted to ascertain the potential range of these plant species in the Indian Himalayan Region by synthesizing species distribution models using MaxEnt for different climate change scenarios. The geocoordinates of Taxus species populations were obtained from various sources, including field visits, scientific literature, and the Global Biodiversity and Information Facility web portal to run the model and the two species were segregated according to their geographic range. Further, the environmental predictors of current and future climate scenarios of four Shared Socioeconomic Pathways (SSP126, SSP345, SSP370, SSP585) were obtained from the WorldClim web portal. The Jackknife test and ROC analysis were used to validate the model. The projected map showed Arunachal Pradesh, Sikkim, Manipur for T. wallichiana under the current climate scenario and Himachal Pradesh, Uttarakhand, and some parts of Jammu & Kashmir as potential distribution regions for T. contorta. In future scenarios, the high potential area for this species decreased the most in 2050s of SSP126 to 4,960.4 km2 for T. wallichiana and corresponding maximum decrease for T. contorta was SSP345 to 6,866.7 km2 in 2050s; which were however found to be increased the most in 2070s for T. wallichiana, i.e. up to 14,693.5 km2 (SSP585) and for T. contorta, an increase of 11,060.69 km2 in 2100s (SSP126). The Jackknife test indicated that the climatic variable, Srad 5 and BIO 17 exerted the largest influence on the generated model of the current potential distribution of T. wallichiana and T. contorta respectively. The research findings are significant as they provide insights into the potential range of Taxus species and can help develop conservation and sustainable management strategies for the unique biodiversity of the region.
期刊介绍:
Tropical Ecology is devoted to all aspects of fundamental and applied ecological research in tropical and sub-tropical ecosystems. Nevertheless, the cutting-edge research in new ecological concepts, methodology and reviews on contemporary themes, not necessarily confined to tropics and sub-tropics, may also be considered for publication at the discretion of the Editor-in-Chief. Areas of current interest include: Biological diversity and its management; Conservation and restoration ecology; Human ecology; Ecological economics; Ecosystem structure and functioning; Ecosystem services; Ecosystem sustainability; Stress and disturbance ecology; Ecology of global change; Ecological modeling; Evolutionary ecology; Quantitative ecology; and Social ecology.
The Journal Tropical Ecology features a distinguished editorial board, working on various ecological aspects of tropical and sub-tropical systems from diverse continents.
Tropical Ecology publishes:
· Original research papers
· Short communications
· Reviews and Mini-reviews on topical themes
· Scientific correspondence
· Book Reviews