{"title":"Nonlinear Multicarrier Transmitter System With Signal Clipping: Measurement, Analysis, and Optimization","authors":"Yuyang Du;Liang Hao;Yiming Lei;Qun Yang;Shiqi Xu","doi":"10.1109/JSYST.2024.3401148","DOIUrl":null,"url":null,"abstract":"Signal clipping is a well-established method employed in orthogonal frequency division multiplexing (OFDM) systems to mitigate peak-to-average power ratio. The utilization of this technique is widespread in electronic devices with limited power or resource capabilities due to its high efficiency and low complexity. While clipping effectively diminishes nonlinear distortion stemming from power amplifiers (PAs), it introduces additional distortion known as clipping distortion. The optimization of system performance, considering both clipping distortions and the nonlinearity of PAs, remains an unresolved challenge due to the intricate modeling of PAs. In this article, we undertake an analysis of PA nonlinearity utilizing the Bessel–Fourier PA model and simplify its power expression through intermodulation product analysis. We mathematically derive expressions for the receiver signal-to-noise ratio and system symbol error rate (SER) for nonlinear clipped OFDM systems. Using these derivations, we explore the optimal system configuration required to achieve the lower bound of SER in practical OFDM systems, taking into account both PA nonlinearity and clipping distortion. The results and methodologies presented in this article contribute to an improved comprehension of system-level optimization in nonlinear OFDM systems employing clipping technology.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1426-1435"},"PeriodicalIF":4.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10540457/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Signal clipping is a well-established method employed in orthogonal frequency division multiplexing (OFDM) systems to mitigate peak-to-average power ratio. The utilization of this technique is widespread in electronic devices with limited power or resource capabilities due to its high efficiency and low complexity. While clipping effectively diminishes nonlinear distortion stemming from power amplifiers (PAs), it introduces additional distortion known as clipping distortion. The optimization of system performance, considering both clipping distortions and the nonlinearity of PAs, remains an unresolved challenge due to the intricate modeling of PAs. In this article, we undertake an analysis of PA nonlinearity utilizing the Bessel–Fourier PA model and simplify its power expression through intermodulation product analysis. We mathematically derive expressions for the receiver signal-to-noise ratio and system symbol error rate (SER) for nonlinear clipped OFDM systems. Using these derivations, we explore the optimal system configuration required to achieve the lower bound of SER in practical OFDM systems, taking into account both PA nonlinearity and clipping distortion. The results and methodologies presented in this article contribute to an improved comprehension of system-level optimization in nonlinear OFDM systems employing clipping technology.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.