{"title":"Laccase-catalyzed octadecylamine modification enables green and stable hydrophobization of bamboo","authors":"Siyao Chen, Zhiwei Fan, Xuanhao Huang, Xiaohong Wang, Yuzhu Chen, Yong Yang, Ying Zhao, Tonghua Lu, Fangli Sun, Hui Wang","doi":"10.1007/s00226-024-01545-2","DOIUrl":null,"url":null,"abstract":"<div><p>Bamboo has attracted widespread attention owing to its strong mechanical properties, availability in numerous regions, and green and low-carbon nature. However, the hydrophilic nature and susceptibility to mold growth limit its wide application. Therefore, this study uses green biological enzyme technology to improve the hydrophobic performance of bamboo, grafting hydrophobic monomer octadecylamine (OA) onto bamboo surfaces under the catalysis of laccase. The optimum reaction conditions such as the amounts of OA monomer and laccase, reaction time, and temperature were determined. Under these optimized conditions, the contact angle of treated bamboo reached 121°± 3°, which was six times higher than that of untreated bamboo, and its hydrophobicity is very stable compared to that of OA-bamboo, could withstand soaking and washing with hot water, ethanol and acetone, and the change rate of contact angle during 180s test was ∼1%. Moreover, as the water absorption rate of bamboo decreased, the defects of bamboo susceptible to mildew growth also considerably improved. The hydrophobic modification mechanism was studied using SEM (scanning electron microscopy), <sup>1</sup>H-NMR (nuclear magnetic resonance), and XPS (X-ray photoelectron spectroscopy), this analysis confirmed that OA grafting onto bamboo under laccase catalysis resulted in stable hydrophobicity. Moreover, OA chemically reacted with lignin in bamboo, possibly forming a C–N bond. This study provides valuable insights into the expanding applications of bamboo as sustainable materials.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"1095 - 1110"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01545-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Bamboo has attracted widespread attention owing to its strong mechanical properties, availability in numerous regions, and green and low-carbon nature. However, the hydrophilic nature and susceptibility to mold growth limit its wide application. Therefore, this study uses green biological enzyme technology to improve the hydrophobic performance of bamboo, grafting hydrophobic monomer octadecylamine (OA) onto bamboo surfaces under the catalysis of laccase. The optimum reaction conditions such as the amounts of OA monomer and laccase, reaction time, and temperature were determined. Under these optimized conditions, the contact angle of treated bamboo reached 121°± 3°, which was six times higher than that of untreated bamboo, and its hydrophobicity is very stable compared to that of OA-bamboo, could withstand soaking and washing with hot water, ethanol and acetone, and the change rate of contact angle during 180s test was ∼1%. Moreover, as the water absorption rate of bamboo decreased, the defects of bamboo susceptible to mildew growth also considerably improved. The hydrophobic modification mechanism was studied using SEM (scanning electron microscopy), 1H-NMR (nuclear magnetic resonance), and XPS (X-ray photoelectron spectroscopy), this analysis confirmed that OA grafting onto bamboo under laccase catalysis resulted in stable hydrophobicity. Moreover, OA chemically reacted with lignin in bamboo, possibly forming a C–N bond. This study provides valuable insights into the expanding applications of bamboo as sustainable materials.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.