{"title":"An electromagnetic shape optimisation for perfectly electric conductors by the time-domain boundary integral equations","authors":"Toru Takahashi","doi":"10.1007/s00366-024-01990-4","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a shape optimisation framework for unsteady electromagnetic scattering problems on the basis of the time-domain boundary integral equation method, focusing on the perfectly electric conductors (PECs). The boundary-only formulation is ideal for treating a shape optimisation problem in an exterior domain. However, the electromagnetic shape optimisation in concern has been unrealised with the boundary integral approach regardless of the fact that the boundary-type shape derivative has been known in the literature. The first contribution of the present study is to derive a novel expression of the shape derivative in terms of the surface current densities of the primary and adjoint problems, by considering that the surface current density is handled by usual integral equations methods. The second contribution is to clarify the integral representations and equations of the adjoint electromagnetic fields in terms of the reversal time. These theoretical achievements possess a high affinity with the standard spatial discretising approach (i.e. RWG basis) whenever the temporal basis is sufficiently smooth. The numerical experiments confirmed the reliability of the proposed shape optimisation methodology and indicated the capability to deal with scientific and engineering applications.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01990-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a shape optimisation framework for unsteady electromagnetic scattering problems on the basis of the time-domain boundary integral equation method, focusing on the perfectly electric conductors (PECs). The boundary-only formulation is ideal for treating a shape optimisation problem in an exterior domain. However, the electromagnetic shape optimisation in concern has been unrealised with the boundary integral approach regardless of the fact that the boundary-type shape derivative has been known in the literature. The first contribution of the present study is to derive a novel expression of the shape derivative in terms of the surface current densities of the primary and adjoint problems, by considering that the surface current density is handled by usual integral equations methods. The second contribution is to clarify the integral representations and equations of the adjoint electromagnetic fields in terms of the reversal time. These theoretical achievements possess a high affinity with the standard spatial discretising approach (i.e. RWG basis) whenever the temporal basis is sufficiently smooth. The numerical experiments confirmed the reliability of the proposed shape optimisation methodology and indicated the capability to deal with scientific and engineering applications.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.