Effect of exogenous γ-aminobutyric acid on physiological property, antioxidant activity, and cadmium uptake of quinoa seedlings under cadmium stress.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioscience Reports Pub Date : 2024-06-26 DOI:10.1042/BSR20240215
Xiao Hua Hao, Ke Xin Liu, Meng Yuan Zhang
{"title":"Effect of exogenous γ-aminobutyric acid on physiological property, antioxidant activity, and cadmium uptake of quinoa seedlings under cadmium stress.","authors":"Xiao Hua Hao, Ke Xin Liu, Meng Yuan Zhang","doi":"10.1042/BSR20240215","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1042/BSR20240215","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外源γ-氨基丁酸对镉胁迫下藜麦幼苗生理特性、抗氧化活性和镉吸收的影响
镉(Cd)污染的增加对藜麦的生长和产量产生了负面影响。γ-氨基丁酸(GABA)可赋予植物对重金属的抗逆性,但其机制尚不清楚。我们利用水培实验探讨了外源 GABA 对藜麦幼苗在镉胁迫下的生理特性、抗氧化能力和镉积累的影响。实验采用偏最小二乘回归法确定了影响镉积累的主要理化指标。与 CK 组相比,暴露于 10 µmol-L-1 和 25 µmol-L-1 Cd 会显著降低藜麦幼苗的光合色素含量、光合作用和生物量积累;导致根系变短变粗;侧根长度减少;超氧化物歧化酶(SOD)和过氧化物酶(POD)活性降低;H2O2 和丙二醛(MDA)含量增加。外源 GABA 可使镉胁迫下藜麦幼苗茎/叶和根中的镉含量分别减少 13.22-21.63% 和 7.92-28.32%,镉积累分别减少 5.37-6.71% 和 1.91-4.09%,H2O2 含量分别减少 38.21-47.46% 和 45.81-55.73%,MDA 含量分别减少 37.65-48.12% 和 29.87-32.51%。在镉胁迫下,添加 GABA 可使根中的 SOD 和 POD 活性分别提高 2.78-5.61% 和 13.81-18.33%。因此,外源 GABA 可通过改善藜麦幼苗的光合特性和抗氧化酶活性,降低细胞膜脂质过氧化程度,从而减少镉在幼苗中的含量和积累,减轻镉胁迫对幼苗生长的毒害作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioscience Reports
Bioscience Reports 生物-细胞生物学
CiteScore
8.50
自引率
0.00%
发文量
380
审稿时长
6-12 weeks
期刊介绍: Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences. Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase. Articles are assessed on soundness, providing a home for valid findings and data. We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing: -new methodologies -tools and reagents to probe biological questions -mechanistic details -disease mechanisms -metabolic processes and their regulation -structure and function -bioenergetics
期刊最新文献
Overlapping and Distinct Physical and Biological Phenotypes in Pure Frailty and Obese Frailty. Multiple ASC-dependent inflammasomes drive differential pro-inflammatory cytokine production in a mouse model of tendinopathy. Simulated ischaemia/reperfusion impairs trophoblast function through divergent oxidative stress- and MMP-9-dependent mechanisms. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Neuroprotective properties of zinc oxide nanoparticles: therapeutic implications for Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1