Wen-Han Wang, Hsuan-Yu Chen, Sheng-Yuan Chen, Chung-Yu Lan
Candida albicans is a member of the human commensal microbiota but can also cause opportunistic infections, including life-threatening invasive candidiasis, particularly in immunocompromised patients. One of the important features of C. albicans commensalism and virulence is its ability to adapt to diverse environmental stress conditions within the host. Rap1 is a DNA-binding protein identified in yeasts, protozoa, and mammalian cells, and it plays multiple functions, including telomere regulation. Intriguingly, our previous study showed that Rap1 is also involved in cell wall integrity, biofilm formation, and virulence in C. albicans. In this work, using RNA-seq analysis and other approaches, the role of C. albicans Rap1 in oxidative stress response was further revealed. The RAP1-deletion mutant exhibited greater resistance to the superoxide generator menadione, a lower level of intracellular reactive oxygen species (ROS) upon menadione treatment, and higher expression levels of superoxide dismutase genes, all in response to oxidative stress. Moreover, the association between Rap1-mediated oxidative stress response and the mitogen-activated protein kinase (MAPK) Hog1, the transcription factor Cap1 and the TOR signaling was also determined. Together, these findings expand our understanding of the complex signaling and transcriptional mechanisms regulating stress responses in C. albicans.
白念珠菌是人类共生微生物群中的一员,但也可引起机会性感染,包括危及生命的侵袭性念珠菌病,尤其是在免疫力低下的患者中。白念珠菌共生和致病的重要特征之一是它能够适应宿主体内不同的环境压力条件。Rap1 是在酵母、原生动物和哺乳动物细胞中发现的一种 DNA 结合蛋白,它具有多种功能,包括端粒调控。有趣的是,我们之前的研究表明,Rap1 还参与了白僵菌细胞壁的完整性、生物膜的形成和毒力的形成。在这项工作中,利用 RNA-seq 分析和其他方法,进一步揭示了白僵菌 Rap1 在氧化应激反应中的作用。RAP1缺失突变体对超氧化物生成物甲萘醌的抵抗力更强,在甲萘醌处理后细胞内活性氧(ROS)水平更低,超氧化物歧化酶基因的表达水平更高,这些都是对氧化应激的反应。此外,还确定了 Rap1 介导的氧化应激反应与丝裂原活化蛋白激酶(MAPK)Hog1、转录因子 Cap1 和 TOR 信号转导之间的关联。这些发现拓展了我们对调控白僵菌应激反应的复杂信号转导和转录机制的理解。
{"title":"Transcriptional profiling reveals the role of Candida albicans Rap1 in oxidative stress response.","authors":"Wen-Han Wang, Hsuan-Yu Chen, Sheng-Yuan Chen, Chung-Yu Lan","doi":"10.1042/BSR20240689","DOIUrl":"https://doi.org/10.1042/BSR20240689","url":null,"abstract":"<p><p>Candida albicans is a member of the human commensal microbiota but can also cause opportunistic infections, including life-threatening invasive candidiasis, particularly in immunocompromised patients. One of the important features of C. albicans commensalism and virulence is its ability to adapt to diverse environmental stress conditions within the host. Rap1 is a DNA-binding protein identified in yeasts, protozoa, and mammalian cells, and it plays multiple functions, including telomere regulation. Intriguingly, our previous study showed that Rap1 is also involved in cell wall integrity, biofilm formation, and virulence in C. albicans. In this work, using RNA-seq analysis and other approaches, the role of C. albicans Rap1 in oxidative stress response was further revealed. The RAP1-deletion mutant exhibited greater resistance to the superoxide generator menadione, a lower level of intracellular reactive oxygen species (ROS) upon menadione treatment, and higher expression levels of superoxide dismutase genes, all in response to oxidative stress. Moreover, the association between Rap1-mediated oxidative stress response and the mitogen-activated protein kinase (MAPK) Hog1, the transcription factor Cap1 and the TOR signaling was also determined. Together, these findings expand our understanding of the complex signaling and transcriptional mechanisms regulating stress responses in C. albicans.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piera Tocci, Valentina Caprara, Celia Roman, Rosanna Sestito, Laura Rosanò, Anna Bagnato
The high-grade serous ovarian cancer (HG-SOC) is a notoriously challenging disease, characterized by a rapid peritoneal dissemination. HG-SOC cells leverage actin-rich membrane protrusions, known as invadopodia, to degrade the surrounding extracellular matrix (ECM) and invade, initiating the metastatic cascade. In HG-SOC, the endothelin-1 (ET-1)/endothelin A receptor (ETAR)-driven signaling coordinates invadopodia activity, however how this axis integrates pro-oncogenic signaling routes, as YAP-driven one, impacting on the invadopodia-mediated ECM degradation and metastatic progression, deserves a deeper investigation. Herein, we observed that downstream of the ET-1/ET-1R axis, the RhoC and Rac1 GTPases, acting as signaling intermediaries, promote the de-phosphorylation and nuclear accumulation of YAP. Conversely, the treatment with the dual ETA/ETB receptor antagonist, macitentan, inhibits the ET-1-driven YAP activity. Similarly, RhoC silencing, or cell transfection with a dominant inactive form of Rac1, restore the YAP phosphorylated and inhibited state. Mechanistically, the ET-1R/YAP signal alliance coordinates invadopodia maturation into ECM-degrading structures, indicating how such ET-1R-guided protein network represents a route able to enhance the HG-SOC invasive potential. At functional level, we found that the interconnection between the ET-1R/RhoC and YAP signals is required for MMP-2 and MMP-9 proteolytic functions, cell invasion, and cytoskeleton architecture changes, supporting the HG-SOC metastatic strength. In HG-SOC patient-derived xenografts (PDX) macitentan, turning-off the invadopodia regulators RhoC/YAP, halt the metastatic colonization. ET-1R targeting, hindering the YAP activity, weakens the invadopodia machinery, embodying a promising therapeutic avenue to prevent peritoneal dissemination in HG-SOC.
{"title":"YAP signaling orchestrates the endothelin-1-guided invadopodia formation in high-grade serous ovarian cancer.","authors":"Piera Tocci, Valentina Caprara, Celia Roman, Rosanna Sestito, Laura Rosanò, Anna Bagnato","doi":"10.1042/BSR20241320","DOIUrl":"https://doi.org/10.1042/BSR20241320","url":null,"abstract":"<p><p>The high-grade serous ovarian cancer (HG-SOC) is a notoriously challenging disease, characterized by a rapid peritoneal dissemination. HG-SOC cells leverage actin-rich membrane protrusions, known as invadopodia, to degrade the surrounding extracellular matrix (ECM) and invade, initiating the metastatic cascade. In HG-SOC, the endothelin-1 (ET-1)/endothelin A receptor (ETAR)-driven signaling coordinates invadopodia activity, however how this axis integrates pro-oncogenic signaling routes, as YAP-driven one, impacting on the invadopodia-mediated ECM degradation and metastatic progression, deserves a deeper investigation. Herein, we observed that downstream of the ET-1/ET-1R axis, the RhoC and Rac1 GTPases, acting as signaling intermediaries, promote the de-phosphorylation and nuclear accumulation of YAP. Conversely, the treatment with the dual ETA/ETB receptor antagonist, macitentan, inhibits the ET-1-driven YAP activity. Similarly, RhoC silencing, or cell transfection with a dominant inactive form of Rac1, restore the YAP phosphorylated and inhibited state. Mechanistically, the ET-1R/YAP signal alliance coordinates invadopodia maturation into ECM-degrading structures, indicating how such ET-1R-guided protein network represents a route able to enhance the HG-SOC invasive potential. At functional level, we found that the interconnection between the ET-1R/RhoC and YAP signals is required for MMP-2 and MMP-9 proteolytic functions, cell invasion, and cytoskeleton architecture changes, supporting the HG-SOC metastatic strength. In HG-SOC patient-derived xenografts (PDX) macitentan, turning-off the invadopodia regulators RhoC/YAP, halt the metastatic colonization. ET-1R targeting, hindering the YAP activity, weakens the invadopodia machinery, embodying a promising therapeutic avenue to prevent peritoneal dissemination in HG-SOC.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xia Liu, Zhe Feng, Fenglian Zhang, Bo Wang, Zhijuan Wei, Nanqing Liao, Min Zhang, Jian Liang, Lisheng Wang
Background: This study investigated the causal relationship between gut microbiota (GM), serum metabolome, and host transcriptome in the development of gout and hyperuricemia (HUA) using genome-wide association studies (GWAS) data and HUA mouse model experiments. Methods: Mendelian randomization (MR) analysis of GWAS summary statistics was performed using an inverse variance weighted (IVW) approach to determine predict the causal role of the gut microbiota on gout. The HUA mouse model was used to characterize changes in the gut microbiome, host metabolome, and host kidney transcriptome by integrating cecal 16S rRNA sequencing, untargeted serum metabolomics, and host mRNA sequencing.
Results: Our analysis demonstrated causal effects of seven gut microbiota taxa on gout, including genera of Ruminococcus, Odoribacter, and Bacteroides. Thirty-eight, immune cell traits were associated with gout. Dysbiosis of Dubosiella, Lactobacillus,Bacteroides, Alloprevotella, and Lachnospiraceae_NK4A136_group genera were associated with changes in the serum metabolites and kidney transcriptome of the HUA model mice. The changes in the gut microbiome of the HUA model mice correlated significantly with alterations in the levels of serum metabolites such as taurodeoxycholic acid, phenylacetylglycine, vanylglycol, methyl hexadecanoic acid, carnosol, 6-aminopenicillanic acid, sphinganine, p-hydroxyphenylacetic acid, pyridoxamine, and de-o-methylsterigmatocystin, and expression of kidney genes such as CNDP2, SELENOP, TTR, CAR3, SLC12A3, SCD1, PIGR, CD74, MFSD4B5, and NAPSA. Conclusion: Our study demonstrated a causal relationship between GM, immune cells, and gout. HUA development involved alterations in the vitamin B6 metabolism because of gut microbiota dysbiosis that resulted in altered pyridoxamine and pyridoxal levels, dysregulated sphingolipid metabolism, and excessive inflammation..
{"title":"Causal Effects of Gut Microbiota on Gout and Hyperuricemia: Insights from Genome-Wide Mendelian Randomization, RNA-Sequencing, 16S rRNA Sequencing, and Metabolomes.","authors":"Xia Liu, Zhe Feng, Fenglian Zhang, Bo Wang, Zhijuan Wei, Nanqing Liao, Min Zhang, Jian Liang, Lisheng Wang","doi":"10.1042/BSR20240595","DOIUrl":"https://doi.org/10.1042/BSR20240595","url":null,"abstract":"<p><strong>Background: </strong>This study investigated the causal relationship between gut microbiota (GM), serum metabolome, and host transcriptome in the development of gout and hyperuricemia (HUA) using genome-wide association studies (GWAS) data and HUA mouse model experiments.  Methods: Mendelian randomization (MR) analysis of GWAS summary statistics was performed using an inverse variance weighted (IVW) approach to determine predict the causal role of the gut microbiota on gout. The HUA mouse model was used to characterize changes in the gut microbiome, host metabolome, and host kidney transcriptome by integrating cecal 16S rRNA sequencing, untargeted serum metabolomics, and host mRNA sequencing.</p>  Results: Our analysis demonstrated causal effects of seven gut microbiota taxa on gout, including genera of Ruminococcus, Odoribacter, and Bacteroides. Thirty-eight, immune cell traits were associated with gout. Dysbiosis of Dubosiella, Lactobacillus,Bacteroides, Alloprevotella, and Lachnospiraceae_NK4A136_group genera were associated with changes in the serum metabolites and kidney transcriptome of the HUA model mice. The changes in the gut microbiome of the HUA model mice correlated significantly with alterations in the levels of serum metabolites such as taurodeoxycholic acid, phenylacetylglycine, vanylglycol, methyl hexadecanoic acid, carnosol, 6-aminopenicillanic acid, sphinganine, p-hydroxyphenylacetic acid, pyridoxamine, and de-o-methylsterigmatocystin, and expression of kidney genes such as CNDP2, SELENOP, TTR, CAR3, SLC12A3, SCD1, PIGR, CD74, MFSD4B5, and NAPSA.</p>  Conclusion: Our study demonstrated a causal relationship between GM, immune cells, and gout. HUA development involved alterations in the vitamin B6 metabolism because of gut microbiota dysbiosis that resulted in altered pyridoxamine and pyridoxal levels, dysregulated sphingolipid metabolism, and excessive inflammation.</p>.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah C Stainbrook, Lindsey N Aubuchon, Amanda Chen, Emily Johnson, Audrey Si, Laila Walton, Angela J Ahrendt, Daniela Strenkert, Joseph M Jez
Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site. Plants therefore utilize the essential chaperone rubisco activase (RCA) to remove these inhibitors and enable continued CO2 fixation. However, RCA does not function at moderately high temperatures (42°C), resulting in impaired rubisco activity and reduced CO2 assimilation. We set out to understand temperature-dependent RCA regulation in four different C4 plants, with a focus on the crop plants maize (two cultivars) and sorghum, as well as the model grass Setaria viridis (setaria) using gas exchange measurements, which confirm that CO2 assimilation is limited by carboxylation in these organisms at high temperatures (42°C). All three species express distinct complements of RCA isoforms and each species alters the isoform and proteoform abundances in response to heat; however, the changes are species-specific. We also examine whether the heat-mediated inactivation of RCA is due to biochemical regulation rather than simple thermal denaturation. We reveal that biochemical regulation affects RCA function differently in different C4 species, and differences are apparent even between different cultivars of the same species. Our results suggest that each grass evolved different strategies to maintain RCA function during stress and we conclude that a successful engineering approach aimed at improving carbon capture in C4 grasses will need to accommodate these individual regulatory mechanisms.
{"title":"C4 grasses employ distinct strategies to acclimate rubisco activase to heat stress.","authors":"Sarah C Stainbrook, Lindsey N Aubuchon, Amanda Chen, Emily Johnson, Audrey Si, Laila Walton, Angela J Ahrendt, Daniela Strenkert, Joseph M Jez","doi":"10.1042/BSR20240353","DOIUrl":"10.1042/BSR20240353","url":null,"abstract":"<p><p>Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site. Plants therefore utilize the essential chaperone rubisco activase (RCA) to remove these inhibitors and enable continued CO2 fixation. However, RCA does not function at moderately high temperatures (42°C), resulting in impaired rubisco activity and reduced CO2 assimilation. We set out to understand temperature-dependent RCA regulation in four different C4 plants, with a focus on the crop plants maize (two cultivars) and sorghum, as well as the model grass Setaria viridis (setaria) using gas exchange measurements, which confirm that CO2 assimilation is limited by carboxylation in these organisms at high temperatures (42°C). All three species express distinct complements of RCA isoforms and each species alters the isoform and proteoform abundances in response to heat; however, the changes are species-specific. We also examine whether the heat-mediated inactivation of RCA is due to biochemical regulation rather than simple thermal denaturation. We reveal that biochemical regulation affects RCA function differently in different C4 species, and differences are apparent even between different cultivars of the same species. Our results suggest that each grass evolved different strategies to maintain RCA function during stress and we conclude that a successful engineering approach aimed at improving carbon capture in C4 grasses will need to accommodate these individual regulatory mechanisms.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inositol pyrophosphates (PP-InsPs) are a sub-family of water soluble inositol phosphates that possess one or more diphosphate groups. PP-InsPs can transfer their β-phosphate group to a phosphorylated Ser residue to generate pyrophosphorylated Ser. This unique post-translational modification occurs on Ser residues that lie in acidic stretches within an intrinsically disordered protein sequence. Serine pyrophosphorylation is dependent on the presence of Mg2+ ions, but does not require an enzyme for catalysis. The mechanisms by which cells regulate PP-InsP-mediated pyrophosphorylation are still unknown. We performed mass spectrometry to identify interactors of IP6K1, an enzyme responsible for the synthesis of the PP-InsP 5-InsP7. Interestingly, IP6K1 interacted with several proteins that are known to undergo 5-InsP7-mediated pyrophosphorylation, including the nucleolar proteins NOLC1, TCOF and UBF1, and AP3B1, the β subunit of the AP3 adaptor protein complex. The IP6K1 interactome also included CK2, a protein kinase that phosphorylates Ser residues prior to pyrophosphorylation. We observe the formation of a protein complex between IP6K1, AP3B1, and the catalytic α-subunit of CK2, and show that disrupting IP6K1 binding to AP3B1 lowers its in vivo pyrophosphorylation. We propose that assembly of a substrate-CK2-IP6K complex would allow for coordinated pre-phosphorylation and pyrophosphorylation of the target serine residue, and provide a mechanism to regulate this enzyme-independent modification.
{"title":"Interaction with IP6K1 supports pyrophosphorylation of substrate proteins by the inositol pyrophosphate 5-InsP7.","authors":"Aisha Hamid, Jayashree S Ladke, Akruti Shah, Shubhra Ganguli, Monisita Pal, Arpita Singh, Rashna Bhandari","doi":"10.1042/BSR20240792","DOIUrl":"10.1042/BSR20240792","url":null,"abstract":"<p><p>Inositol pyrophosphates (PP-InsPs) are a sub-family of water soluble inositol phosphates that possess one or more diphosphate groups. PP-InsPs can transfer their β-phosphate group to a phosphorylated Ser residue to generate pyrophosphorylated Ser. This unique post-translational modification occurs on Ser residues that lie in acidic stretches within an intrinsically disordered protein sequence. Serine pyrophosphorylation is dependent on the presence of Mg2+ ions, but does not require an enzyme for catalysis. The mechanisms by which cells regulate PP-InsP-mediated pyrophosphorylation are still unknown. We performed mass spectrometry to identify interactors of IP6K1, an enzyme responsible for the synthesis of the PP-InsP 5-InsP7. Interestingly, IP6K1 interacted with several proteins that are known to undergo 5-InsP7-mediated pyrophosphorylation, including the nucleolar proteins NOLC1, TCOF and UBF1, and AP3B1, the β subunit of the AP3 adaptor protein complex. The IP6K1 interactome also included CK2, a protein kinase that phosphorylates Ser residues prior to pyrophosphorylation. We observe the formation of a protein complex between IP6K1, AP3B1, and the catalytic α-subunit of CK2, and show that disrupting IP6K1 binding to AP3B1 lowers its in vivo pyrophosphorylation. We propose that assembly of a substrate-CK2-IP6K complex would allow for coordinated pre-phosphorylation and pyrophosphorylation of the target serine residue, and provide a mechanism to regulate this enzyme-independent modification.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alena Morgan, Nivasini Shekhar, Veronika Strnadová, Zdenko Pirník, Eliška Haasová, Jan Kopecký, Andrea Pačesová, Blanka Železná, Jaroslav Kuneš, Kristina Bardová, Lenka Maletínská
GPR10 and neuropeptide FF receptor 2 (NPFFR2) play important role in the regulation of food intake and energy homeostasis. Understanding the interaction between these receptors and their specific ligands, such as prolactin-releasing peptide, is essential for developing stable peptide analogs with potential for treating obesity. By breeding and characterizing double knockout (dKO) mice fed standard or high-fat diet (HFD), we provide insights into the metabolic regulation associated with the GPR10 and NPFFR2 deficiency. Both WT and dKO mice were subjected to behavioral tests and an oral glucose tolerance test. Moreover, dual-energy X-ray absorptiometry (DEXA) followed by indirect calorimetry were performed to characterize dKO mice. dKO mice of both sexes, when exposed to an HFD, showed reduced glucose tolerance, hyperinsulinemia, and insulin resistance compared with controls. Moreover, they displayed increased liver weight with worsened hepatic steatosis. Mice displayed significantly increased body weight, which was more pronounced in dKO males and caused by higher caloric intake on a standard diet, while dKO females displayed obesity characterized by increased white adipose tissue and enhanced hepatic lipid accumulation on an HFD. Moreover, dKO females exhibited anxiety-like behavior in the open field test. dKO mice on a standard diet had a lower respiratory quotient, with no significant changes in energy expenditure. These results provide insights into alterations associated with disrupted GPR10 and NPFFR2 signaling, contributing to the development of potential anti-obesity treatment.
{"title":"Deficiency of GPR10 and NPFFR2 receptors leads to sex-specific prediabetic syndrome and late-onset obesity in mice.","authors":"Alena Morgan, Nivasini Shekhar, Veronika Strnadová, Zdenko Pirník, Eliška Haasová, Jan Kopecký, Andrea Pačesová, Blanka Železná, Jaroslav Kuneš, Kristina Bardová, Lenka Maletínská","doi":"10.1042/BSR20241103","DOIUrl":"10.1042/BSR20241103","url":null,"abstract":"<p><p>GPR10 and neuropeptide FF receptor 2 (NPFFR2) play important role in the regulation of food intake and energy homeostasis. Understanding the interaction between these receptors and their specific ligands, such as prolactin-releasing peptide, is essential for developing stable peptide analogs with potential for treating obesity. By breeding and characterizing double knockout (dKO) mice fed standard or high-fat diet (HFD), we provide insights into the metabolic regulation associated with the GPR10 and NPFFR2 deficiency. Both WT and dKO mice were subjected to behavioral tests and an oral glucose tolerance test. Moreover, dual-energy X-ray absorptiometry (DEXA) followed by indirect calorimetry were performed to characterize dKO mice. dKO mice of both sexes, when exposed to an HFD, showed reduced glucose tolerance, hyperinsulinemia, and insulin resistance compared with controls. Moreover, they displayed increased liver weight with worsened hepatic steatosis. Mice displayed significantly increased body weight, which was more pronounced in dKO males and caused by higher caloric intake on a standard diet, while dKO females displayed obesity characterized by increased white adipose tissue and enhanced hepatic lipid accumulation on an HFD. Moreover, dKO females exhibited anxiety-like behavior in the open field test. dKO mice on a standard diet had a lower respiratory quotient, with no significant changes in energy expenditure. These results provide insights into alterations associated with disrupted GPR10 and NPFFR2 signaling, contributing to the development of potential anti-obesity treatment.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Astrid Mayleth Rivera Antonio, Itzia Irene Padilla Martínez, Yazmín Karina Márquez-Flores, Alan Hipólito Juárez Solano, Mónica A Torres Ramos, Martha Cecilia Rosales Hernández
Ulcerative colitis (UC) is a multifactorial disease that causes long-lasting inflammation and ulcers in the digestive tract. UC is the most common form of inflammatory bowel disease (IBD). The current treatment for mild-to-moderate UC involves the use of 5-aminosalicylates (5-ASA), but much of this compound is unabsorbed and metabolized by N-acetylation. Several efforts have since been made to evaluate new molecules from synthetic or natural sources. Recently, it was reported that (E)-(5-chloro-2-hydroxy)-α-aminocinnamic acid (2c) and (E)-(2,4-dihydroxy)-α-aminocinnamic acid (2f) are as good or better myeloperoxidase (MPO) inhibitors and antioxidants than 5-ASA. Then, the present study aimed to evaluate the protective effects of 2c and 2f on a rat model of UC induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed that TNBS caused the induction of colonic ulcers, as well as a significant increase in MPO activity and malondialdehyde (MDA) and a decrease in glutathione (GSH) content. The administration of 2f, 2c and 5-ASA, decreased the ulcers presence, inhibited MPO peroxidation activity and MPO presence (as determined by immunofluorescence), and increased GSH and reduced MDA content. However, 2f was better than 2c and 5-ASA, then, the principal mechanism by which 2f presented a protective effect in a UC model induced by TNBS in rats is by inhibiting MPO activity and due to its antioxidant activity.
{"title":"Protective effect of (E)-(2,4-dihydroxy)-α-aminocinnamic acid, a hydroxy cinnamic acid derivative, in an ulcerative colitis model induced by TNBS.","authors":"Astrid Mayleth Rivera Antonio, Itzia Irene Padilla Martínez, Yazmín Karina Márquez-Flores, Alan Hipólito Juárez Solano, Mónica A Torres Ramos, Martha Cecilia Rosales Hernández","doi":"10.1042/BSR20240797","DOIUrl":"10.1042/BSR20240797","url":null,"abstract":"<p><p>Ulcerative colitis (UC) is a multifactorial disease that causes long-lasting inflammation and ulcers in the digestive tract. UC is the most common form of inflammatory bowel disease (IBD). The current treatment for mild-to-moderate UC involves the use of 5-aminosalicylates (5-ASA), but much of this compound is unabsorbed and metabolized by N-acetylation. Several efforts have since been made to evaluate new molecules from synthetic or natural sources. Recently, it was reported that (E)-(5-chloro-2-hydroxy)-α-aminocinnamic acid (2c) and (E)-(2,4-dihydroxy)-α-aminocinnamic acid (2f) are as good or better myeloperoxidase (MPO) inhibitors and antioxidants than 5-ASA. Then, the present study aimed to evaluate the protective effects of 2c and 2f on a rat model of UC induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed that TNBS caused the induction of colonic ulcers, as well as a significant increase in MPO activity and malondialdehyde (MDA) and a decrease in glutathione (GSH) content. The administration of 2f, 2c and 5-ASA, decreased the ulcers presence, inhibited MPO peroxidation activity and MPO presence (as determined by immunofluorescence), and increased GSH and reduced MDA content. However, 2f was better than 2c and 5-ASA, then, the principal mechanism by which 2f presented a protective effect in a UC model induced by TNBS in rats is by inhibiting MPO activity and due to its antioxidant activity.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fisetin and quercetin, polyphenol flavonoids, have been shown to have a wide range of beneficial pharmacological effects including anti-inflammatory, antioxidative, and anti-cancer. Our previous work shows that fisetin also affects the specification of the adipogenic-osteogenic lineage of human mesenchymal stem cells (hMSCs) by modulating the Hippo-YAP signaling pathway. Although quercetin has a structure similar to that of fisetin, its effects on the functional properties of hMSCs have not yet been investigated. The objective of the present study is to determine the effects of quercetin on the various properties of hMSCs, including proliferation, migration, and differentiation capacity toward adipogenic and osteogenic lineages. The results show that while fisetin increases hMSC adipogenic differentiation, quercetin inhibited adipogenic differentiation of hMSCs. The inhibition is mediated, at least in part, by the activation of hippo signaling and up-regulation of miR-27b, which inhibits the expression of genes involved in all critical steps of lipid droplet biogenesis, resulting in a decrease in the number of lipid droplets in hMSCs. It is possible that the lack of hydroxylation of the 5 position on the A ring of quercetin could be responsible for its different effect on the adipogenic-osteogenic lineage specification of hMSCs compared with fisetin. Molecular docking and molecular dynamics simulation suggested that fisetin and quercetin possibly bind to serine / threonine protein kinases 4 (STK4/MST1), which is an upstream kinase responsible for LATS phosphorylation. Taken together, our results demonstrate more insight into the mechanism underlying the role of flavonoid fisetin and quercetin in the regulation of adipogenesis.
{"title":"Effect of the polyphenol flavonoids fisetin and quercetin on the adipogenic differentiation of human mesenchymal stromal cells.","authors":"Chanchao Lorthongpanich, Thanapon Charoenwongpaiboon, Praphasri Septham, Chuti Laowtammathron, Pimonwan Srisook, Pakpoom Kheolamai, Sirikul Manochantr, Surapol Issaragrisil","doi":"10.1042/BSR20240623","DOIUrl":"10.1042/BSR20240623","url":null,"abstract":"<p><p>Fisetin and quercetin, polyphenol flavonoids, have been shown to have a wide range of beneficial pharmacological effects including anti-inflammatory, antioxidative, and anti-cancer. Our previous work shows that fisetin also affects the specification of the adipogenic-osteogenic lineage of human mesenchymal stem cells (hMSCs) by modulating the Hippo-YAP signaling pathway. Although quercetin has a structure similar to that of fisetin, its effects on the functional properties of hMSCs have not yet been investigated. The objective of the present study is to determine the effects of quercetin on the various properties of hMSCs, including proliferation, migration, and differentiation capacity toward adipogenic and osteogenic lineages. The results show that while fisetin increases hMSC adipogenic differentiation, quercetin inhibited adipogenic differentiation of hMSCs. The inhibition is mediated, at least in part, by the activation of hippo signaling and up-regulation of miR-27b, which inhibits the expression of genes involved in all critical steps of lipid droplet biogenesis, resulting in a decrease in the number of lipid droplets in hMSCs. It is possible that the lack of hydroxylation of the 5 position on the A ring of quercetin could be responsible for its different effect on the adipogenic-osteogenic lineage specification of hMSCs compared with fisetin. Molecular docking and molecular dynamics simulation suggested that fisetin and quercetin possibly bind to serine / threonine protein kinases 4 (STK4/MST1), which is an upstream kinase responsible for LATS phosphorylation. Taken together, our results demonstrate more insight into the mechanism underlying the role of flavonoid fisetin and quercetin in the regulation of adipogenesis.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}