Catherine Estefany Davila-Arenas, Lorne Doig, Xiaowen Ji, Banamali Panigrahi, Immanuela Ezugba, Karsten Liber
{"title":"Toxicity Evaluation of Water and Pore Water from a Pilot-Scale Pit Lake in the Alberta Oil Sands Region to Daphnia Species","authors":"Catherine Estefany Davila-Arenas, Lorne Doig, Xiaowen Ji, Banamali Panigrahi, Immanuela Ezugba, Karsten Liber","doi":"10.1007/s00244-024-01071-z","DOIUrl":null,"url":null,"abstract":"<div><p>Significant amounts of tailings and oil sands process-affected water (OSPW) are generated by bitumen extraction in the Alberta Oil Sands region. These by-products are potentially toxic to aquatic organisms and require remediation. The study site was Lake Miwasin, a pilot-scale pit lake integrated into broader reclamation efforts. It consists of treated tailings overlaid with blended OSPW and freshwater, exhibiting meromictic conditions and harboring aquatic communities. This study assessed the potential toxicity of Lake Miwasin surface water (LMW) and pore water (LMP) using saline-acclimated Cladocera, including lab strains of <i>Daphnia magna</i> and <i>Daphnia pulex</i> and native <i>Daphnia</i> species collected in brackish Humboldt Lake (HL) and Lake Miwasin (LM). The pore water evaluation was used to represent a worst-case water quality scenario during pond stratification. Additionally, the inclusion of native organisms incorporated site-specific adaptations and regional sensitivity into the toxicity evaluation. Our results showed that LMW did not display acute or chronic toxicity to lab species and native <i>Daphnia sp.</i> (HL). Conversely, LMP was acutely toxic to both lab species and native <i>D. pulex</i> (LM). In chronic tests (12 days exposure), LMP negatively affected reproduction in <i>D. pulex</i> (lab), with reductions in the number of offspring. Limited ability to acclimated organisms to the high salinity levels of LMP resulted in a shortened exposure duration for the chronic toxicity test. In addition to salinity being identified as a stressor in LMP, toxicity identification evaluation (TIE) phase I findings demonstrated that the observed toxicity for <i>D. magna</i> (lab) and <i>D. pulex</i> (LM, native) might be attributed to ammonia and metals in LMP. Further investigations are required to confirm the contributions of these stressors to LMP toxicity.</p></div>","PeriodicalId":8377,"journal":{"name":"Archives of Environmental Contamination and Toxicology","volume":"87 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00244-024-01071-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Significant amounts of tailings and oil sands process-affected water (OSPW) are generated by bitumen extraction in the Alberta Oil Sands region. These by-products are potentially toxic to aquatic organisms and require remediation. The study site was Lake Miwasin, a pilot-scale pit lake integrated into broader reclamation efforts. It consists of treated tailings overlaid with blended OSPW and freshwater, exhibiting meromictic conditions and harboring aquatic communities. This study assessed the potential toxicity of Lake Miwasin surface water (LMW) and pore water (LMP) using saline-acclimated Cladocera, including lab strains of Daphnia magna and Daphnia pulex and native Daphnia species collected in brackish Humboldt Lake (HL) and Lake Miwasin (LM). The pore water evaluation was used to represent a worst-case water quality scenario during pond stratification. Additionally, the inclusion of native organisms incorporated site-specific adaptations and regional sensitivity into the toxicity evaluation. Our results showed that LMW did not display acute or chronic toxicity to lab species and native Daphnia sp. (HL). Conversely, LMP was acutely toxic to both lab species and native D. pulex (LM). In chronic tests (12 days exposure), LMP negatively affected reproduction in D. pulex (lab), with reductions in the number of offspring. Limited ability to acclimated organisms to the high salinity levels of LMP resulted in a shortened exposure duration for the chronic toxicity test. In addition to salinity being identified as a stressor in LMP, toxicity identification evaluation (TIE) phase I findings demonstrated that the observed toxicity for D. magna (lab) and D. pulex (LM, native) might be attributed to ammonia and metals in LMP. Further investigations are required to confirm the contributions of these stressors to LMP toxicity.
期刊介绍:
Archives of Environmental Contamination and Toxicology provides a place for the publication of timely, detailed, and definitive scientific studies pertaining to the source, transport, fate and / or effects of contaminants in the environment. The journal will consider submissions dealing with new analytical and toxicological techniques that advance our understanding of the source, transport, fate and / or effects of contaminants in the environment. AECT will now consider mini-reviews (where length including references is less than 5,000 words), which highlight case studies, a geographic topic of interest, or a timely subject of debate. AECT will also consider Special Issues on subjects of broad interest. The journal strongly encourages authors to ensure that their submission places a strong emphasis on ecosystem processes; submissions limited to technical aspects of such areas as toxicity testing for single chemicals, wastewater effluent characterization, human occupation exposure, or agricultural phytotoxicity are unlikely to be considered.