Yang Zhou, Fan Zhou, Shujing Xu, Dazhou Shi, Dang Ding, Shuo Wang, Vasanthanathan Poongavanam, Kai Tang, Xinyong Liu, Peng Zhan
{"title":"Hydrophobic tagging of small molecules: an overview of the literature and future outlook.","authors":"Yang Zhou, Fan Zhou, Shujing Xu, Dazhou Shi, Dang Ding, Shuo Wang, Vasanthanathan Poongavanam, Kai Tang, Xinyong Liu, Peng Zhan","doi":"10.1080/17460441.2024.2360416","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hydrophobic tagging (HyT) technology presents a distinct therapeutic strategy diverging from conventional small molecule drugs, providing an innovative approach to drug design. This review aims to provide an overview of the HyT literature and future outlook to offer guidance for drug design.</p><p><strong>Areas covered: </strong>In this review, the authors introduce the composition, mechanisms and advantages of HyT technology, as well as summarize the detailed applications of HyT technology in anti-cancer, neurodegenerative diseases (NDs), autoimmune disorders, cardiovascular diseases (CVDs), and other fields. Furthermore, this review discusses key aspects of the future development of HyT molecules.</p><p><strong>Expert opinion: </strong>HyT emerges as a highly promising targeted protein degradation (TPD) strategy, following the successful development of proteolysis targeting chimeras (PROTAC) and molecular glue. Based on exploring new avenues, modification of the HyT molecule itself potentially enhances the technology. Improved synthetic pathways and emphasis on pharmacokinetic (PK) properties will facilitate the development of HyT. Furthermore, elucidating the biochemical basis by which the compound's hydrophobic moiety recruits the protein homeostasis network will enable the development of more precise assays that can guide the optimization of the linker and hydrophobic moiety.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2024.2360416","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Hydrophobic tagging (HyT) technology presents a distinct therapeutic strategy diverging from conventional small molecule drugs, providing an innovative approach to drug design. This review aims to provide an overview of the HyT literature and future outlook to offer guidance for drug design.
Areas covered: In this review, the authors introduce the composition, mechanisms and advantages of HyT technology, as well as summarize the detailed applications of HyT technology in anti-cancer, neurodegenerative diseases (NDs), autoimmune disorders, cardiovascular diseases (CVDs), and other fields. Furthermore, this review discusses key aspects of the future development of HyT molecules.
Expert opinion: HyT emerges as a highly promising targeted protein degradation (TPD) strategy, following the successful development of proteolysis targeting chimeras (PROTAC) and molecular glue. Based on exploring new avenues, modification of the HyT molecule itself potentially enhances the technology. Improved synthetic pathways and emphasis on pharmacokinetic (PK) properties will facilitate the development of HyT. Furthermore, elucidating the biochemical basis by which the compound's hydrophobic moiety recruits the protein homeostasis network will enable the development of more precise assays that can guide the optimization of the linker and hydrophobic moiety.
期刊介绍:
Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology
Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug
The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.