T D Stanley, Hristos Doucouliagos, Maximilian Maier, František Bartoš
{"title":"Correcting bias in the meta-analysis of correlations.","authors":"T D Stanley, Hristos Doucouliagos, Maximilian Maier, František Bartoš","doi":"10.1037/met0000662","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate that all conventional meta-analyses of correlation coefficients are biased, explain why, and offer solutions. Because the standard errors of the correlation coefficients depend on the size of the coefficient, inverse-variance weighted averages will be biased even under ideal meta-analytical conditions (i.e., absence of publication bias, <i>p</i>-hacking, or other biases). Transformation to Fisher's <i>z</i> often greatly reduces these biases but still does not mitigate them entirely. Although all are small-sample biases (<i>n</i> < 200), they will often have practical consequences in psychology where the typical sample size of correlational studies is 86. We offer two solutions: the well-known Fisher's z-transformation and new small-sample adjustment of Fisher's that renders any remaining bias scientifically trivial. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000662","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate that all conventional meta-analyses of correlation coefficients are biased, explain why, and offer solutions. Because the standard errors of the correlation coefficients depend on the size of the coefficient, inverse-variance weighted averages will be biased even under ideal meta-analytical conditions (i.e., absence of publication bias, p-hacking, or other biases). Transformation to Fisher's z often greatly reduces these biases but still does not mitigate them entirely. Although all are small-sample biases (n < 200), they will often have practical consequences in psychology where the typical sample size of correlational studies is 86. We offer two solutions: the well-known Fisher's z-transformation and new small-sample adjustment of Fisher's that renders any remaining bias scientifically trivial. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.