Improvement of Whole-body Bone Planar Images on a Bone-dedicated Single-photon Emission Computed Tomography Scanner by Blind Deconvolution Algorithm.

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Physics Pub Date : 2024-01-01 Epub Date: 2024-03-30 DOI:10.4103/jmp.jmp_127_23
Zhexin Wang, Hui Liu, Li Cheng, Zhenlei Lyu, Lilei Gao, Nianming Jiang, Zuoxiang He, Yaqiang Liu
{"title":"Improvement of Whole-body Bone Planar Images on a Bone-dedicated Single-photon Emission Computed Tomography Scanner by Blind Deconvolution Algorithm.","authors":"Zhexin Wang, Hui Liu, Li Cheng, Zhenlei Lyu, Lilei Gao, Nianming Jiang, Zuoxiang He, Yaqiang Liu","doi":"10.4103/jmp.jmp_127_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We have developed a bone-dedicated collimator with higher sensitivity but slightly degraded resolution on single-photon emission computed tomography (SPECT) for planar bone scintigraphy, compared with conventional low-energy high-resolution collimator. In this work, we investigated the feasibility of using the blind deconvolution algorithm to improve the resolution of planar images on bone scintigraphy.</p><p><strong>Materials and methods: </strong>Monte Carlo simulation was performed with the NCAT phantom for modeling bone scintigraphy on the clinical dual-head SPECT scanner (Imagine NET 632, Beijing Novel Medical Equipment Ltd.) equipped with the bone-dedicated collimator. Maximum likelihood estimation method was used for the blind deconvolution algorithm. The initial estimation of point spread function (PSF) and iteration number for the method were determined by comparing the deblurred images obtained from different input parameters. We simulated different tumors in five different locations and with five different diameters to evaluate the robustness of the initial inputs. Furthermore, we performed chest phantom studies on the clinical SPECT scanner. The quantified increased contrast ratio (CR) between the tumor and the background was evaluated.</p><p><strong>Results: </strong>The 2 mm PSF kernel and 10 iterations provided a practical and robust deblurred image on our system. Those two inputs can generate robust deblurred images in terms of the tumor location and size with an average increased CR of 21.6%. The phantom studies also demonstrated the ability of blind deconvolution, using those two inputs, with increased CRs of 17%, 17%, 22%, 20%, and 13% for lesions with diameters of 1 cm, 2 cm, 3 cm, 4 cm, and 5 cm, respectively.</p><p><strong>Conclusions: </strong>It is feasible to use the blind deconvolution algorithm to deblur the planar images for SPECT bone scintigraphy. The appropriate values of the PSF kernel and the iteration number for the blind deconvolution can be determined using simulation studies.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 1","pages":"110-119"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141745/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_127_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: We have developed a bone-dedicated collimator with higher sensitivity but slightly degraded resolution on single-photon emission computed tomography (SPECT) for planar bone scintigraphy, compared with conventional low-energy high-resolution collimator. In this work, we investigated the feasibility of using the blind deconvolution algorithm to improve the resolution of planar images on bone scintigraphy.

Materials and methods: Monte Carlo simulation was performed with the NCAT phantom for modeling bone scintigraphy on the clinical dual-head SPECT scanner (Imagine NET 632, Beijing Novel Medical Equipment Ltd.) equipped with the bone-dedicated collimator. Maximum likelihood estimation method was used for the blind deconvolution algorithm. The initial estimation of point spread function (PSF) and iteration number for the method were determined by comparing the deblurred images obtained from different input parameters. We simulated different tumors in five different locations and with five different diameters to evaluate the robustness of the initial inputs. Furthermore, we performed chest phantom studies on the clinical SPECT scanner. The quantified increased contrast ratio (CR) between the tumor and the background was evaluated.

Results: The 2 mm PSF kernel and 10 iterations provided a practical and robust deblurred image on our system. Those two inputs can generate robust deblurred images in terms of the tumor location and size with an average increased CR of 21.6%. The phantom studies also demonstrated the ability of blind deconvolution, using those two inputs, with increased CRs of 17%, 17%, 22%, 20%, and 13% for lesions with diameters of 1 cm, 2 cm, 3 cm, 4 cm, and 5 cm, respectively.

Conclusions: It is feasible to use the blind deconvolution algorithm to deblur the planar images for SPECT bone scintigraphy. The appropriate values of the PSF kernel and the iteration number for the blind deconvolution can be determined using simulation studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用盲解卷积算法改进骨骼专用单光子发射计算机断层扫描仪上的全身骨骼平面图像
目的:与传统的低能量高分辨率准直器相比,我们开发的骨专用准直器在平面骨闪烁成像的单光子发射计算机断层扫描(SPECT)上具有更高的灵敏度,但分辨率略有下降。在这项工作中,我们研究了使用盲去卷积算法提高骨闪烁成像平面图像分辨率的可行性:在配备骨专用准直器的临床双头 SPECT 扫描仪(Imagine NET 632,北京诺维尔医疗设备有限公司)上使用 NCAT 模型进行蒙特卡罗模拟,以建立骨闪烁成像模型。盲解卷算法采用最大似然估计法。点扩散函数(PSF)的初始估计值和方法的迭代次数是通过比较不同输入参数得到的去模糊图像确定的。我们模拟了五个不同位置和五个不同直径的不同肿瘤,以评估初始输入的鲁棒性。此外,我们还在临床 SPECT 扫描仪上进行了胸部模型研究。我们对肿瘤与背景之间增加的量化对比度(CR)进行了评估:结果:在我们的系统中,2 毫米 PSF 内核和 10 次迭代提供了实用且稳健的去模糊图像。从肿瘤位置和大小的角度来看,这两个输入可以生成稳健的去模糊图像,平均对比度提高了 21.6%。模型研究也证明了使用这两种输入进行盲去卷积的能力,对于直径分别为 1 厘米、2 厘米、3 厘米、4 厘米和 5 厘米的病变,CR 分别提高了 17%、17%、22%、20% 和 13%:结论:在 SPECT 骨闪烁成像中使用盲去卷积算法去除平面图像的模糊是可行的。通过模拟研究,可以确定盲去卷积的 PSF 内核和迭代次数的合适值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Physics
Journal of Medical Physics RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.10
自引率
11.10%
发文量
55
审稿时长
30 weeks
期刊介绍: JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.
期刊最新文献
A Segmentation-based Automated Calculation of Patient Size and Size-specific Dose Estimates in Pediatric Computed Tomography Scans. A Study on Radiation Level at the Treatment Plane Due to Induced Activity in Linear Accelerator Head. Advancements and Applications of Three-dimensional Printing Technology in Surgery. Agar-based Phantom for Evaluating Targeting of High-intensity Focused Ultrasound Systems for Breast Ablation. An Analysis of Radiotherapy Machine Requirements in India: Impact of the Pandemic and Regional Disparities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1