Distilling BlackBox to Interpretable Models for Efficient Transfer Learning.

Shantanu Ghosh, Ke Yu, Kayhan Batmanghelich
{"title":"Distilling BlackBox to Interpretable Models for Efficient Transfer Learning.","authors":"Shantanu Ghosh, Ke Yu, Kayhan Batmanghelich","doi":"10.1007/978-3-031-43895-0_59","DOIUrl":null,"url":null,"abstract":"<p><p>Building generalizable AI models is one of the primary challenges in the healthcare domain. While radiologists rely on generalizable descriptive rules of abnormality, Neural Network (NN) models suffer even with a slight shift in input distribution (<i>e.g</i>., scanner type). Fine-tuning a model to transfer knowledge from one domain to another requires a significant amount of labeled data in the target domain. In this paper, we develop an interpretable model that can be efficiently fine-tuned to an unseen target domain with minimal computational cost. We assume the interpretable component of NN to be approximately domain-invariant. However, interpretable models typically underperform compared to their Blackbox (BB) variants. We start with a BB in the source domain and distill it into a <i>mixture</i> of shallow interpretable models using human-understandable concepts. As each interpretable model covers a subset of data, a mixture of interpretable models achieves comparable performance as BB. Further, we use the pseudo-labeling technique from semi-supervised learning (SSL) to learn the concept classifier in the target domain, followed by fine-tuning the interpretable models in the target domain. We evaluate our model using a real-life large-scale chest-X-ray (CXR) classification dataset. The code is available at: https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141113/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43895-0_59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Building generalizable AI models is one of the primary challenges in the healthcare domain. While radiologists rely on generalizable descriptive rules of abnormality, Neural Network (NN) models suffer even with a slight shift in input distribution (e.g., scanner type). Fine-tuning a model to transfer knowledge from one domain to another requires a significant amount of labeled data in the target domain. In this paper, we develop an interpretable model that can be efficiently fine-tuned to an unseen target domain with minimal computational cost. We assume the interpretable component of NN to be approximately domain-invariant. However, interpretable models typically underperform compared to their Blackbox (BB) variants. We start with a BB in the source domain and distill it into a mixture of shallow interpretable models using human-understandable concepts. As each interpretable model covers a subset of data, a mixture of interpretable models achieves comparable performance as BB. Further, we use the pseudo-labeling technique from semi-supervised learning (SSL) to learn the concept classifier in the target domain, followed by fine-tuning the interpretable models in the target domain. We evaluate our model using a real-life large-scale chest-X-ray (CXR) classification dataset. The code is available at: https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将黑盒子提炼为可解释的模型,以实现高效的迁移学习。
建立可通用的人工智能模型是医疗保健领域的主要挑战之一。放射科医生依赖于可通用的异常描述规则,而神经网络(NN)模型即使在输入分布(如扫描仪类型)稍有变化的情况下也会受到影响。要对模型进行微调,将知识从一个领域转移到另一个领域,就需要在目标领域获得大量标注数据。在本文中,我们开发了一种可解释模型,它能以最小的计算成本高效地微调到未见过的目标领域。我们假设 NN 的可解释部分近似于域不变。然而,与黑盒(BB)变体相比,可解释模型通常表现不佳。我们从源领域的 BB 开始,利用人类可理解的概念将其提炼为浅层可解释模型的混合物。由于每个可解释模型都涵盖了数据的一个子集,因此可解释模型的混合物可以达到与黑箱模型相当的性能。此外,我们使用半监督学习(SSL)中的伪标记技术来学习目标领域中的概念分类器,然后对目标领域中的可解释模型进行微调。我们使用现实生活中的大规模胸透(CXR)分类数据集对我们的模型进行了评估。代码见:https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Does Pruning Impact Long-Tailed Multi-label Medical Image Classifiers? An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment. LSOR: Longitudinally-Consistent Self-Organized Representation Learning. An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment. Generating Realistic Brain MRIs via a Conditional Diffusion Probabilistic Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1