A survey on planet leaf disease identification and classification by various machine-learning technique

Premakumari Pujar, Ashutosh Kumar, Vineet Kumar
{"title":"A survey on planet leaf disease identification and classification by various machine-learning technique","authors":"Premakumari Pujar, Ashutosh Kumar, Vineet Kumar","doi":"10.11591/ijai.v13.i2.pp1187-1194","DOIUrl":null,"url":null,"abstract":"An overview of methods for identifying plants diseases is given in this article. Each sample is categorized by being divided into various groups. The approach of classification involves identifying healthy and diseased leaves based on morphological traits including texture, color, shape, and pattern, among others. Sorting and categorizing plants can be challenging, especially when doing so across a large area, due to the closeness of their visual qualities. There are several methods based on computer vision and image processing. Selecting the right categorization method can be difficult because the outcomes rely on the data you supply. There are several applications for the categorization of plant leaf diseases in fields like agriculture and biological research. This article gives a summary of several approaches currently in use for identifying and categorizing leaf diseases, as well as their benefits and drawbacks. These approaches include preprocessing methods, feature extraction and selection methods, datasets employed, classifiers, and performance metrics","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"8 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp1187-1194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An overview of methods for identifying plants diseases is given in this article. Each sample is categorized by being divided into various groups. The approach of classification involves identifying healthy and diseased leaves based on morphological traits including texture, color, shape, and pattern, among others. Sorting and categorizing plants can be challenging, especially when doing so across a large area, due to the closeness of their visual qualities. There are several methods based on computer vision and image processing. Selecting the right categorization method can be difficult because the outcomes rely on the data you supply. There are several applications for the categorization of plant leaf diseases in fields like agriculture and biological research. This article gives a summary of several approaches currently in use for identifying and categorizing leaf diseases, as well as their benefits and drawbacks. These approaches include preprocessing methods, feature extraction and selection methods, datasets employed, classifiers, and performance metrics
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用各种机器学习技术识别和分类行星叶病的研究
本文概述了识别植物病害的方法。每个样本都会被分为不同的组别。分类方法包括根据纹理、颜色、形状和图案等形态特征识别健康叶片和病叶。由于植物的视觉特质非常接近,因此对植物进行分类和归类具有一定的挑战性,尤其是在对大面积植物进行分类和归类时。目前有几种基于计算机视觉和图像处理的方法。选择正确的分类方法可能很困难,因为结果取决于您提供的数据。植物叶片病害分类在农业和生物研究等领域有多种应用。本文总结了目前用于识别和分类叶病的几种方法,以及它们的优点和缺点。这些方法包括预处理方法、特征提取和选择方法、使用的数据集、分类器和性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FinTech forecasting using an evolving connectionist system for lenders and borrowers: ecosystem behavior Dealing imbalance dataset problem in sentiment analysis of recession in Indonesia A survey on planet leaf disease identification and classification by various machine-learning technique Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+ Feature selection techniques for microarray dataset: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1