Aspect based sentiment analysis using a novel ensemble deep network

Abraham Rajan, Manohar Manur
{"title":"Aspect based sentiment analysis using a novel ensemble deep network","authors":"Abraham Rajan, Manohar Manur","doi":"10.11591/ijai.v13.i2.pp1668-1678","DOIUrl":null,"url":null,"abstract":"Aspect-based sentiment analysis (ABSA) is a fine-grained task in natural language processing, which aims to predict the sentiment polarity of several parts of a sentence or document. The essential aspect of sentiment polarity and global context have deep relationships that have not received enough attention. This research work design and develops a novel ensemble deep network (EDN) which comprises the various network and integrated to enhance the model performance. In the proposed work the words of the input sentence are converted into word vectors using the optimised bidirectional encoder representations from transformers (BERT) model and an optimised BERT-graph neural networks (GNN) model with convolutions is built that analyses the ABSA of the input sentence. The optimised GNN model with convolutions for context-based word representations is developed for the word-vector embedding. We propose a novel EDN for an ABSA model for optimised BERT over GNN with convolutions. The proposed ensemble deep network proposed system (EDN-PS) is evaluated with various existing techniques and results are plotted in terms of metrics for accuracy and F1- score, concluding that the proposed EDN-PS ensures better performance in comparison with the existing model.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp1668-1678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aspect-based sentiment analysis (ABSA) is a fine-grained task in natural language processing, which aims to predict the sentiment polarity of several parts of a sentence or document. The essential aspect of sentiment polarity and global context have deep relationships that have not received enough attention. This research work design and develops a novel ensemble deep network (EDN) which comprises the various network and integrated to enhance the model performance. In the proposed work the words of the input sentence are converted into word vectors using the optimised bidirectional encoder representations from transformers (BERT) model and an optimised BERT-graph neural networks (GNN) model with convolutions is built that analyses the ABSA of the input sentence. The optimised GNN model with convolutions for context-based word representations is developed for the word-vector embedding. We propose a novel EDN for an ABSA model for optimised BERT over GNN with convolutions. The proposed ensemble deep network proposed system (EDN-PS) is evaluated with various existing techniques and results are plotted in terms of metrics for accuracy and F1- score, concluding that the proposed EDN-PS ensures better performance in comparison with the existing model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用新型集合深度网络进行基于方面的情感分析
基于方面的情感分析(ABSA)是自然语言处理中的一项细粒度任务,旨在预测句子或文档中若干部分的情感极性。情感极性的基本方面与全局上下文有着深层次的关系,但却没有得到足够的重视。本研究工作设计并开发了一种新颖的集合深度网络(EDN),它由各种网络组成,并通过整合来提高模型性能。在拟议的工作中,输入句子中的单词通过优化的变压器双向编码器表示(BERT)模型转换成单词向量,并建立一个优化的带卷积的 BERT 图神经网络(GNN)模型来分析输入句子的 ABSA。针对基于上下文的单词表示,我们开发了具有卷积功能的优化 GNN 模型,用于单词向量嵌入。我们为优化 BERT 的 ABSA 模型提出了一种新颖的 EDN,用于卷积 GNN。我们将提议的集合深度网络提议系统(EDN-PS)与各种现有技术进行了评估,并根据准确率和 F1- 分数指标绘制了评估结果,得出的结论是,与现有模型相比,提议的 EDN-PS 确保了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FinTech forecasting using an evolving connectionist system for lenders and borrowers: ecosystem behavior Dealing imbalance dataset problem in sentiment analysis of recession in Indonesia A survey on planet leaf disease identification and classification by various machine-learning technique Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+ Feature selection techniques for microarray dataset: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1