Dental caries detection using faster region-based convolutional neural network with residual network

Andre Citro Febriliyan Lanyak, Agi Prasetiadi, Haris Budi Widodo, Muhammad Hisyam Ghani, Abiyan Athallah
{"title":"Dental caries detection using faster region-based convolutional neural network with residual network","authors":"Andre Citro Febriliyan Lanyak, Agi Prasetiadi, Haris Budi Widodo, Muhammad Hisyam Ghani, Abiyan Athallah","doi":"10.11591/ijai.v13.i2.pp2027-2035","DOIUrl":null,"url":null,"abstract":"Dental caries is the highest prevalent dental disease in the world by 2022. Caries can be stopped by early detection of patients through efficient screening. Previously, there have been several methods used to detect caries such as single shot multibox detector (SSD), faster region-based convolutional neural network (Faster R-CNN) and you only look once (YOLO). This research aims to develop accurate dental caries detection using Faster R-CNN. Using a dataset collected from scraping on the internet, this research is started by creating an original dataset consisting of 81 base images which are then augmented to a total of 486 images and annotated by dental health experts from Jenderal Soedirman University. Transfer learning using pre-trained Faster R-CNN residual network (ResNet)-50 and ResNet-101 model is utilized to detect and localise dental caries. The Faster R-CNN ResNet-50 model trained using the Adam optimizer produces a mean average precision (mAP) of 0.213, and those using the momentum optimizer produce a mAP of 0.177. While the Faster R-CNN ResNet-101 model trained using the Adam optimizer produces a mAP of 0.192, and those using the momentum optimizer produce a mAP of 0.004. The model trained on the dataset showed satisfactory results in detecting dental caries, especially ResNet-50 with Adam optimizer.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"7 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2027-2035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dental caries is the highest prevalent dental disease in the world by 2022. Caries can be stopped by early detection of patients through efficient screening. Previously, there have been several methods used to detect caries such as single shot multibox detector (SSD), faster region-based convolutional neural network (Faster R-CNN) and you only look once (YOLO). This research aims to develop accurate dental caries detection using Faster R-CNN. Using a dataset collected from scraping on the internet, this research is started by creating an original dataset consisting of 81 base images which are then augmented to a total of 486 images and annotated by dental health experts from Jenderal Soedirman University. Transfer learning using pre-trained Faster R-CNN residual network (ResNet)-50 and ResNet-101 model is utilized to detect and localise dental caries. The Faster R-CNN ResNet-50 model trained using the Adam optimizer produces a mean average precision (mAP) of 0.213, and those using the momentum optimizer produce a mAP of 0.177. While the Faster R-CNN ResNet-101 model trained using the Adam optimizer produces a mAP of 0.192, and those using the momentum optimizer produce a mAP of 0.004. The model trained on the dataset showed satisfactory results in detecting dental caries, especially ResNet-50 with Adam optimizer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用更快的基于区域的卷积神经网络和残差网络检测龋齿
到 2022 年,龋齿将成为全球发病率最高的牙科疾病。龋齿可以通过有效的筛查及早发现来阻止。此前,已有多种方法用于检测龋齿,如单枪多盒检测器(SSD)、基于区域的更快卷积神经网络(Faster R-CNN)和只看一次(YOLO)。本研究旨在利用 Faster R-CNN 开发精确的龋齿检测技术。本研究使用从互联网上搜索到的数据集,首先创建一个由 81 张基础图像组成的原始数据集,然后将其增加到总共 486 张图像,并由 Jenderal Soedirman 大学的牙科健康专家进行注释。使用预训练的 Faster R-CNN 残差网络 (ResNet)-50 和 ResNet-101 模型进行迁移学习,以检测和定位龋齿。使用 Adam 优化器训练的 Faster R-CNN ResNet-50 模型的平均精确度 (mAP) 为 0.213,而使用动量优化器训练的模型的平均精确度 (mAP) 为 0.177。而使用 Adam 优化器训练的 Faster R-CNN ResNet-101 模型的 mAP 为 0.192,使用动量优化器训练的模型的 mAP 为 0.004。在数据集上训练的模型在检测龋齿方面取得了令人满意的结果,尤其是使用 Adam 优化器的 ResNet-50。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FinTech forecasting using an evolving connectionist system for lenders and borrowers: ecosystem behavior Dealing imbalance dataset problem in sentiment analysis of recession in Indonesia A survey on planet leaf disease identification and classification by various machine-learning technique Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+ Feature selection techniques for microarray dataset: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1