Evaluation of Indonesia’s police public service platforms through sentiment and thematic analysis

Hasna Melani Puspasari, Ilham Zharif Mustaqim, Avita Tri Utami, Rahmad Syalevi, Y. Ruldeviyani
{"title":"Evaluation of Indonesia’s police public service platforms through sentiment and thematic analysis","authors":"Hasna Melani Puspasari, Ilham Zharif Mustaqim, Avita Tri Utami, Rahmad Syalevi, Y. Ruldeviyani","doi":"10.11591/ijai.v13.i2.pp1596-1607","DOIUrl":null,"url":null,"abstract":"The Indonesian national police (Polri) offer public services through mobile apps: Digital korlantas polri (DigiKorlantas) and samsat digital nasional (SIGNAL). Sentiment analysis gauges public perceptions, serving as a basis for e-government evaluation using user ratings and comments from app stores. Keyword relevance is assessed via feature extraction and Naïve Bayes classification. Thematic analysis is implemented using N-grams methods to identify the factors affecting the effectiveness based on user experiences. The accuracy of the model reaches 81.09% where it indicates a high performance. DigiKorlantas acquires slightly more negative reviews in comparation with positive reviews which are 51% and 49% respectively. In contrast, positive sentiment is dominant on SIGNAL which reach 58%, compared with negative sentiment that in 42%. N-grams reveal similar review patterns for both apps. Some of the solutions are Korlantas Polri should enhance the verification functionality with several techniques such as retinex algorithms or optical character recognition pipeline and increase the capacity of supporting server then releasing an updated version of application to address errors or bugs. This analysis can be alternative evaluation by the Polri to measure the success of the application and find out the continuous improvement of the process and the system.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"7 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp1596-1607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Indonesian national police (Polri) offer public services through mobile apps: Digital korlantas polri (DigiKorlantas) and samsat digital nasional (SIGNAL). Sentiment analysis gauges public perceptions, serving as a basis for e-government evaluation using user ratings and comments from app stores. Keyword relevance is assessed via feature extraction and Naïve Bayes classification. Thematic analysis is implemented using N-grams methods to identify the factors affecting the effectiveness based on user experiences. The accuracy of the model reaches 81.09% where it indicates a high performance. DigiKorlantas acquires slightly more negative reviews in comparation with positive reviews which are 51% and 49% respectively. In contrast, positive sentiment is dominant on SIGNAL which reach 58%, compared with negative sentiment that in 42%. N-grams reveal similar review patterns for both apps. Some of the solutions are Korlantas Polri should enhance the verification functionality with several techniques such as retinex algorithms or optical character recognition pipeline and increase the capacity of supporting server then releasing an updated version of application to address errors or bugs. This analysis can be alternative evaluation by the Polri to measure the success of the application and find out the continuous improvement of the process and the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过情感和主题分析评估印度尼西亚警察公共服务平台
印度尼西亚国家警察(Polri)通过移动应用程序提供公共服务:Digital korlantas polri (DigiKorlantas) 和 samsat digital nasional (SIGNAL)。情感分析可衡量公众的看法,并利用应用程序商店中的用户评分和评论作为电子政务评估的基础。关键词相关性通过特征提取和奈维贝叶斯分类进行评估。使用 N-grams 方法进行专题分析,根据用户体验确定影响有效性的因素。该模型的准确率达到 81.09%,显示出较高的性能。与正面评论相比,DigiKorlantas 获得的负面评论略多,分别为 51% 和 49%。相比之下,正面评价在 SIGNAL 上占主导地位,达到 58%,而负面评价为 42%。N-grams 显示这两款应用的评论模式相似。一些解决方案是,Korlantas Polri 应使用多种技术(如视网膜算法或光学字符识别管道)增强验证功能,并提高支持服务器的容量,然后发布更新版本的应用程序,以解决错误或漏洞。Polri 可以通过这种分析进行替代评估,以衡量应用程序的成功与否,并发现流程和系统的持续改进之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FinTech forecasting using an evolving connectionist system for lenders and borrowers: ecosystem behavior Dealing imbalance dataset problem in sentiment analysis of recession in Indonesia A survey on planet leaf disease identification and classification by various machine-learning technique Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+ Feature selection techniques for microarray dataset: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1