Enhancing CdSe/ZnS Quantum-Dot Light-Emitting Diode Performance: The Impact of Thermal Treatment Atmospheres on Fabrication Processes

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Nanoelectronics and Optoelectronics Pub Date : 2024-06-01 DOI:10.1166/jno.2024.3615
Jimin Lee, Honyeon Lee
{"title":"Enhancing CdSe/ZnS Quantum-Dot Light-Emitting Diode Performance: The Impact of Thermal Treatment Atmospheres on Fabrication Processes","authors":"Jimin Lee, Honyeon Lee","doi":"10.1166/jno.2024.3615","DOIUrl":null,"url":null,"abstract":"We explored the thermal treatment impact on the performance of quantum-dot light-emitting diodes (QLEDs). The QLEDs comprised multiple layers: a 2.2-μm thick epoxy buffer layer; a bottom cathode composed of 12-nm MoOx/10-nm Ag/12-nm MoOx; a 20-nm ZnO\n electron transporting layer (ETL); a 10-nm CdSe/ZnS quantum dot light emission layer (EML); a 40-nm 4,4′,4″-Tris(carbazol-9-yl) triphenylamine hole transporting layer; a 10-nm WOx hole injection layer; and a 100-nm Ag top anode. We applied thermal treatments to the cathode,\n ETL, and EML separately to assess their effects on the QLEDs. Additionally, we evaluated the impact of the thermal treatment atmosphere. Vacuum thermal treatment on the cathode and EML resulted in minor improvements in QLED performance, whereas treatment of the ETL led to a decline in performance.\n In contrast, air thermal treatment on the cathode and EML decreased QLED performance but significantly improved it by 15% in current efficiency when applied to the ETL. The performance differences attributable to the thermal treatment atmosphere are likely due to ligand removal and oxidation\n processes, facilitated by thermal energy and oxygen. Our study highlights that air thermal treatment on the ETL substantially improves QLED performance, offering crucial insights into the significance of thermal treatment in QLED development.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jno.2024.3615","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We explored the thermal treatment impact on the performance of quantum-dot light-emitting diodes (QLEDs). The QLEDs comprised multiple layers: a 2.2-μm thick epoxy buffer layer; a bottom cathode composed of 12-nm MoOx/10-nm Ag/12-nm MoOx; a 20-nm ZnO electron transporting layer (ETL); a 10-nm CdSe/ZnS quantum dot light emission layer (EML); a 40-nm 4,4′,4″-Tris(carbazol-9-yl) triphenylamine hole transporting layer; a 10-nm WOx hole injection layer; and a 100-nm Ag top anode. We applied thermal treatments to the cathode, ETL, and EML separately to assess their effects on the QLEDs. Additionally, we evaluated the impact of the thermal treatment atmosphere. Vacuum thermal treatment on the cathode and EML resulted in minor improvements in QLED performance, whereas treatment of the ETL led to a decline in performance. In contrast, air thermal treatment on the cathode and EML decreased QLED performance but significantly improved it by 15% in current efficiency when applied to the ETL. The performance differences attributable to the thermal treatment atmosphere are likely due to ligand removal and oxidation processes, facilitated by thermal energy and oxygen. Our study highlights that air thermal treatment on the ETL substantially improves QLED performance, offering crucial insights into the significance of thermal treatment in QLED development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高镉硒/锌锡量子点发光二极管的性能:热处理气氛对制造工艺的影响
我们探索了热处理对量子点发光二极管(QLED)性能的影响。QLED 由多层组成:2.2-μm 厚的环氧缓冲层;由 12-nm MoOx/10-nm Ag/12-nm MoOx 组成的底部阴极;20-nm ZnO 电子传输层 (ETL);10-nm CdSe/ZnS 量子点发光层 (EML);40-nm 4,4′,4″-三(咔唑-9-基)三苯胺空穴传输层;10-nm WOx 空穴注入层;以及 100-nm Ag 顶部阳极。我们分别对阴极、ETL 和 EML 进行了热处理,以评估它们对 QLED 的影响。此外,我们还评估了热处理气氛的影响。对阴极和 EML 进行真空热处理后,QLED 的性能略有提高,而对 ETL 的处理则导致性能下降。与此相反,对阴极和 EML 进行空气热处理会降低 QLED 性能,但对 ETL 进行空气热处理时,其电流效率会显著提高 15%。热处理气氛造成的性能差异可能是由于热能和氧气促进了配位体的去除和氧化过程。我们的研究突出表明,对 ETL 进行空气热处理可大幅提高 QLED 性能,这为了解热处理在 QLED 开发中的重要性提供了重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanoelectronics and Optoelectronics
Journal of Nanoelectronics and Optoelectronics 工程技术-工程:电子与电气
自引率
16.70%
发文量
48
审稿时长
12.5 months
期刊最新文献
Design and Numerical Analysis of Double Encoder-Swinnets-A Novel Swin Transformers-Based Diabetic Foot Design of Fostered Power Terahertz VLSI Testing Using Deep Neural Network and Embrace User Intent Optimization Multi-Objective Intelligent Optimization Design Method of Microstrip Antenna Based on Back Propagation Neural Network Effective Stress Detection and Classification System Using African Buffalo Optimization and Recalling-Enhanced Recurrent Neural Network for Nano-Electronic Typed Data Hydrothermal Synthesis of Metal Ferrite Nanocomposites for Energy Storage Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1