Simulation of Non-Newtonian Blood Flow in Diverging Bifurcated Vessels

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2024-06-01 DOI:10.47176/jafm.17.6.2329
J. Chu, L. L. Xiao, C. S. Lin, S. Liu, K. X. Zhang, P. Wei
{"title":"Simulation of Non-Newtonian Blood Flow in Diverging Bifurcated Vessels","authors":"J. Chu, L. L. Xiao, C. S. Lin, S. Liu, K. X. Zhang, P. Wei","doi":"10.47176/jafm.17.6.2329","DOIUrl":null,"url":null,"abstract":"Bifurcated vessels represent a typical vascular unit of the cardiovascular system. In this study, the blood flow in symmetric and asymmetric bifurcated vessels are simulated based on computational fluid dynamics method. The blood is modeled as non-Newtonian fluid, and the pulsatile flow velocity is applied on the inlet. The effects of the fluid model, bifurcation angle and symmetry of the geometry of the vessel are investigated. The results show that the wall shear stress (WSS) on the outer wall of daughter branches for the non-Newtonian fluid flow is greater than that for Newtonian fluid flow, and the discrepancy between the flow of two fluid models is obvious at relatively low flow rates. With the bifurcation angle increases, the peak axial velocity of the cross-section of daughter branch decreases, so the WSS increases. For the non-Newtonian fluid flow in the asymmetric bifurcated vessels, more flow passes through the daughter vessel with a lower angle, and the WSS along the outer wall of which is lower. Furthermore, the region with a low time-averaged wall stress (TAWSS) and high oscillating shear index(OSI) distributed on the outer wall of bifurcation vessels are larger for the flow in the vessel with smaller bifurcation angle","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.6.2329","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bifurcated vessels represent a typical vascular unit of the cardiovascular system. In this study, the blood flow in symmetric and asymmetric bifurcated vessels are simulated based on computational fluid dynamics method. The blood is modeled as non-Newtonian fluid, and the pulsatile flow velocity is applied on the inlet. The effects of the fluid model, bifurcation angle and symmetry of the geometry of the vessel are investigated. The results show that the wall shear stress (WSS) on the outer wall of daughter branches for the non-Newtonian fluid flow is greater than that for Newtonian fluid flow, and the discrepancy between the flow of two fluid models is obvious at relatively low flow rates. With the bifurcation angle increases, the peak axial velocity of the cross-section of daughter branch decreases, so the WSS increases. For the non-Newtonian fluid flow in the asymmetric bifurcated vessels, more flow passes through the daughter vessel with a lower angle, and the WSS along the outer wall of which is lower. Furthermore, the region with a low time-averaged wall stress (TAWSS) and high oscillating shear index(OSI) distributed on the outer wall of bifurcation vessels are larger for the flow in the vessel with smaller bifurcation angle
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发散分叉血管中的非牛顿血流模拟
分叉血管是心血管系统中典型的血管单元。本研究基于计算流体动力学方法模拟了对称和非对称分叉血管中的血流。血液被模拟为非牛顿流体,入口处采用脉动流速。研究了流体模型、分叉角度和血管几何对称性的影响。结果表明,非牛顿流体流动时子分支外壁的壁面剪应力(WSS)大于牛顿流体流动时的壁面剪应力(WSS),而且在流速相对较低时,两种流体模型的流动差异明显。随着分叉角的增大,子分支横截面的峰值轴向速度减小,因此 WSS 增大。对于非牛顿流体在非对称分叉容器中的流动,更多的流体通过角度较小的子容器,沿其外壁的 WSS 值较低。此外,在分叉角度较小的容器中,分叉容器外壁分布的低时间平均壁面应力(TAWSS)和高振荡剪切指数(OSI)区域更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Experimental and LES Studies of Propane–air Premixed Gases in Pipelines Containing Mixed Obstacles Influence of a Modified Weir Profile on Velocity Field and Dissipation Rate in Stepped Spillways: A Comparative Study Using Physical Models and Computational Fluid Dynamics Numerical Analysis of Mechanism on Heat Transfer Deterioration of Hexamethyldisiloxane in a Vertical Upward Tube at Supercritical Pressures Numerical Simulation Study of the Effect of Outlet on the Axial Vortex Separator Numerical Study on the Influence of Plasma Actuation on the Cavitation Characteristics of Hydrofoil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1