Analysis of nickel oxide as a counter electrode for dye-sensitized solar cells using OghmaNano software

Nur Afiqah Hani Senin, I. Rummaja, M. I. Idris, Z. Napiah, Radi Husin Bin Ramlee, Marzaini Rashid, Luke J. Bradley
{"title":"Analysis of nickel oxide as a counter electrode for dye-sensitized solar cells using OghmaNano software","authors":"Nur Afiqah Hani Senin, I. Rummaja, M. I. Idris, Z. Napiah, Radi Husin Bin Ramlee, Marzaini Rashid, Luke J. Bradley","doi":"10.11591/ijpeds.v15.i2.pp1218-1226","DOIUrl":null,"url":null,"abstract":"Dye-sensitized solar cells (DSSCs), a promising green technology, convert solar energy into electricity more cost-effectively than traditional solar cells. While platinum (Pt) is commonly used in DSSCs, its high cost and toxicity limit practical applications. Recent research aims to develop low-cost counter electrodes with high efficiency. Nickel oxide (NiO), a p-type semiconductor with a wide bandgap, good transmittance, and suitable work function, emerges as a potential alternative for counter electrode of DSSCs. In this work, DSSCs with NiO of thicknesses varying from 100 nm to 1000 nm were simulated to determine its influence on photovoltaic performance using OghmaNano software. The structure of simulated solar cells consists of NiO as counter electrode, zinc oxide (ZnO) as photoanode, N719 as dyes, electrolyte as charge carrier transport, and fluorine-doped tin oxide (FTO) as a contact layer. There are five data of NiO used as an active layer. From the simulation results, NiO-doped gold exhibits the highest power conversion efficiency (PCE) of 15.95% at a thickness of 700 nm, while pure NiO shows the lowest PCE with 4.53% at a thickness of 600 nm. These results have demonstrated that NiO can replace Pt as a counter electrode for DSSCs and doping plays a vital role in increasing efficiency.","PeriodicalId":355274,"journal":{"name":"International Journal of Power Electronics and Drive Systems (IJPEDS)","volume":"4 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems (IJPEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijpeds.v15.i2.pp1218-1226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dye-sensitized solar cells (DSSCs), a promising green technology, convert solar energy into electricity more cost-effectively than traditional solar cells. While platinum (Pt) is commonly used in DSSCs, its high cost and toxicity limit practical applications. Recent research aims to develop low-cost counter electrodes with high efficiency. Nickel oxide (NiO), a p-type semiconductor with a wide bandgap, good transmittance, and suitable work function, emerges as a potential alternative for counter electrode of DSSCs. In this work, DSSCs with NiO of thicknesses varying from 100 nm to 1000 nm were simulated to determine its influence on photovoltaic performance using OghmaNano software. The structure of simulated solar cells consists of NiO as counter electrode, zinc oxide (ZnO) as photoanode, N719 as dyes, electrolyte as charge carrier transport, and fluorine-doped tin oxide (FTO) as a contact layer. There are five data of NiO used as an active layer. From the simulation results, NiO-doped gold exhibits the highest power conversion efficiency (PCE) of 15.95% at a thickness of 700 nm, while pure NiO shows the lowest PCE with 4.53% at a thickness of 600 nm. These results have demonstrated that NiO can replace Pt as a counter electrode for DSSCs and doping plays a vital role in increasing efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 OghmaNano 软件分析作为染料敏化太阳能电池对电极的氧化镍
染料敏化太阳能电池(DSSC)是一种前景广阔的绿色技术,与传统太阳能电池相比,它能以更低的成本将太阳能转化为电能。虽然铂(Pt)通常用于 DSSC,但其高成本和毒性限制了其实际应用。最近的研究旨在开发具有高效率的低成本对电极。氧化镍(NiO)是一种 p 型半导体,具有宽带隙、良好的透射率和合适的功函数,是 DSSC 反电极的潜在替代品。在这项工作中,使用 OghmaNano 软件模拟了厚度从 100 纳米到 1000 纳米不等的氧化镍 DSSC,以确定其对光伏性能的影响。模拟太阳能电池的结构包括作为对电极的氧化镍、作为光阳极的氧化锌(ZnO)、作为染料的 N719、作为电荷载流子传输的电解质以及作为接触层的掺氟氧化锡(FTO)。用作活性层的氧化镍有五个数据。从模拟结果来看,掺杂 NiO 的金在厚度为 700 纳米时的功率转换效率(PCE)最高,达到 15.95%;而纯 NiO 在厚度为 600 纳米时的功率转换效率(PCE)最低,仅为 4.53%。这些结果表明,氧化镍可以取代铂作为 DSSC 的对电极,而掺杂在提高效率方面起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The implementation of an optimized neural network in a hybrid system for energy management Design and verification of q-axis perturbation based active islanding detection schemes for DG systems A review on soft computing techniques used in induction motor drive application Enactment of HBMMC five-level inverter based D-STATCOM using robust controllers Novel control of PV-wind-battery powered standalone power supply system based LSTM based ANN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1