Basma I. Waisi, Israa S. Al-Bayati, Asrar A. Alobaidy, Mohammed A. Manal
{"title":"Adsorption Isotherms and Kinetics Studies of Lead on Polyacrylonitrile-Based Activated Carbon Nonwoven Nanofibres","authors":"Basma I. Waisi, Israa S. Al-Bayati, Asrar A. Alobaidy, Mohammed A. Manal","doi":"10.12912/27197050/186546","DOIUrl":null,"url":null,"abstract":"Activated carbon nonwoven nanofibres (ACNN) mat derived from polyacrylonitrile was manufactured through the electrospinning method followed by thermal treatment steps. The ACNN ability to adsorb Pb(II) from a liquid solution was evaluated. The fabricated ACNN was characterized using scanning electron microscope, Fourier-transform infrared spectroscopy, and Brunauer-Emmett-Teller method. The resulting ACNN exhibited nanofibres with a diameter of 530 nm and a surface area of 550 m 2 /g. Various adsorption experiments were performed in batch scale to study the impact of factors like contact time, initial Pb(II) ions concentration, and pH. At pH 5, ACNN achieved a removal efficiency of 98% of Pb(II). The equilibrium data for Pb(II) ions was analysed using the Freundlich and Langmuir isotherm models. Both kinetic models (pseudo-first-order and pseudo-second-order) and isotherm models were tested. Results revealed that the Langmuir model accurately described the adsorption isotherm of Pb(II) with a maximum capacity of 15.72 mg/g. Data analysis suggested that the pseudo-second-order model better represented the kinetic adsorption behaviour of Pb(II).","PeriodicalId":448145,"journal":{"name":"Ecological Engineering & Environmental Technology","volume":"6 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering & Environmental Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12912/27197050/186546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Activated carbon nonwoven nanofibres (ACNN) mat derived from polyacrylonitrile was manufactured through the electrospinning method followed by thermal treatment steps. The ACNN ability to adsorb Pb(II) from a liquid solution was evaluated. The fabricated ACNN was characterized using scanning electron microscope, Fourier-transform infrared spectroscopy, and Brunauer-Emmett-Teller method. The resulting ACNN exhibited nanofibres with a diameter of 530 nm and a surface area of 550 m 2 /g. Various adsorption experiments were performed in batch scale to study the impact of factors like contact time, initial Pb(II) ions concentration, and pH. At pH 5, ACNN achieved a removal efficiency of 98% of Pb(II). The equilibrium data for Pb(II) ions was analysed using the Freundlich and Langmuir isotherm models. Both kinetic models (pseudo-first-order and pseudo-second-order) and isotherm models were tested. Results revealed that the Langmuir model accurately described the adsorption isotherm of Pb(II) with a maximum capacity of 15.72 mg/g. Data analysis suggested that the pseudo-second-order model better represented the kinetic adsorption behaviour of Pb(II).