Computer model for detecting tsunami wave hazard on built-up land using machine learning and sentinel 2A satellite imagery

Sri Yulianto Joko Prasetyo, Wiwin Sulistyo, Erwien Christanto, Bistok Hasiholan Simanjuntak
{"title":"Computer model for detecting tsunami wave hazard on built-up land using machine learning and sentinel 2A satellite imagery","authors":"Sri Yulianto Joko Prasetyo, Wiwin Sulistyo, Erwien Christanto, Bistok Hasiholan Simanjuntak","doi":"10.11591/ijai.v13.i2.pp1535-1546","DOIUrl":null,"url":null,"abstract":"The aim of this research is to compile a tsunami wave hazard scale based on built-up land density extracted and classified by machine learning from Sentinel 2A satellite and digital elevation model (DEM) imageries. This research was carried out in 5 stages, namely: (i) pre-processing of Sentinel 2A and DEM images, (ii) Classification of VI data using the machine learning algorithms, (iii) Spatial prediction using the ordinary kriging method, (iv) Field testing using the confusion matrix method, (v) Preparation of decision matrix for tsunami wave hazard. The results of the study show that the most accurate classification algorithm for classifying built-up indices data is the k-nearest neighbor (k-NN) algorithm. The results of the statistical accuracy test show that the most accurate is normalized difference built-up index (NDBI) with a mean of square error (MSE) value of 0.073 and a mean of absolute error (MAE) of 0.003. DEM analysis shows that the research area is at an altitude of 0–15 meters above sea level so it is in the high vulnerability to medium vulnerability category. Field testing showed user accuracy of 91.11%, manufacturer accuracy of 92.16%, and overall average accuracy of 91%.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"49 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp1535-1546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this research is to compile a tsunami wave hazard scale based on built-up land density extracted and classified by machine learning from Sentinel 2A satellite and digital elevation model (DEM) imageries. This research was carried out in 5 stages, namely: (i) pre-processing of Sentinel 2A and DEM images, (ii) Classification of VI data using the machine learning algorithms, (iii) Spatial prediction using the ordinary kriging method, (iv) Field testing using the confusion matrix method, (v) Preparation of decision matrix for tsunami wave hazard. The results of the study show that the most accurate classification algorithm for classifying built-up indices data is the k-nearest neighbor (k-NN) algorithm. The results of the statistical accuracy test show that the most accurate is normalized difference built-up index (NDBI) with a mean of square error (MSE) value of 0.073 and a mean of absolute error (MAE) of 0.003. DEM analysis shows that the research area is at an altitude of 0–15 meters above sea level so it is in the high vulnerability to medium vulnerability category. Field testing showed user accuracy of 91.11%, manufacturer accuracy of 92.16%, and overall average accuracy of 91%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习和哨兵 2A 卫星图像探测建筑密集区海啸波浪危害的计算机模型
本研究的目的是从哨兵 2A 卫星和数字高程模型(DEM)图像中通过机器学习提取并分类的建筑密集度为基础,编制海啸波浪危害等级表。这项研究分五个阶段进行,即:(i) 对 Sentinel 2A 和 DEM 图像进行预处理;(ii) 利用机器学习算法对 VI 数据进行分类;(iii) 利用普通克里金法进行空间预测;(iv) 利用混淆矩阵法进行实地测试;(v) 编制海啸波浪危害决策矩阵。研究结果表明,对已建指数数据进行分类的最准确分类算法是 k 近邻(k-NN)算法。统计准确性测试结果表明,最准确的是归一化差异建成指数(NDBI),其平均平方误差(MSE)值为 0.073,平均绝对误差(MAE)为 0.003。DEM 分析表明,研究区域的海拔高度为 0-15 米,因此属于高脆弱度到中等脆弱度类别。实地测试显示,用户准确率为 91.11%,制造商准确率为 92.16%,总体平均准确率为 91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FinTech forecasting using an evolving connectionist system for lenders and borrowers: ecosystem behavior Dealing imbalance dataset problem in sentiment analysis of recession in Indonesia A survey on planet leaf disease identification and classification by various machine-learning technique Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+ Feature selection techniques for microarray dataset: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1