{"title":"Multi-Component Composting of Agricultural By-Products Improves Compost Quality and Effects on the Growth and Yield of Cucumber","authors":"Thieu Thi Phong Thu, Nguyen Thi Loan","doi":"10.12911/22998993/187036","DOIUrl":null,"url":null,"abstract":"Agricultural by-products can be converted into organic fertilizers through thermophilic composting process. In this study, four combinations of different agricultural by-product materials were composted to find a mixing treatment that improves thermophilic composting process and produces good quality compost. Four treatments included M1 (straw, chicken manure, elephant grass), M2 (straw, chicken manure, cabbage leaves), M3 (straw, cow manure, elephant grass) and M4 (straw, cow manure, cabbage leaves). Compost phytotoxicity was tested on Brassica and Spinach seeds through germination tests. Experiment of evaluating the effects of these compost combined with inorganic nitrogen fertilizer on the growth and yield of cucumber was also conducted. Research results indicated that using agricultural by-product composting materials including straw, chicken manure with elephant grass or cabbage leaves gave better temperature behavior, compost quality and volume than others. Composts of the treatments are considered free of toxicity because they all gave a germination of over 80%. Applying 70% composts of M1 or M2 combining with chemical nitrogen fertilizer replaced for 30% of nitrogen in compost to soil significantly increased the growth and yield of cucumber. The agricultural by-products should thus be converted into nutritious compost which is healthy food feeding soil and crops to contribute to closing the food chain in circular agriculture, protecting environment, and developing agriculture production sustainably.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/187036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Agricultural by-products can be converted into organic fertilizers through thermophilic composting process. In this study, four combinations of different agricultural by-product materials were composted to find a mixing treatment that improves thermophilic composting process and produces good quality compost. Four treatments included M1 (straw, chicken manure, elephant grass), M2 (straw, chicken manure, cabbage leaves), M3 (straw, cow manure, elephant grass) and M4 (straw, cow manure, cabbage leaves). Compost phytotoxicity was tested on Brassica and Spinach seeds through germination tests. Experiment of evaluating the effects of these compost combined with inorganic nitrogen fertilizer on the growth and yield of cucumber was also conducted. Research results indicated that using agricultural by-product composting materials including straw, chicken manure with elephant grass or cabbage leaves gave better temperature behavior, compost quality and volume than others. Composts of the treatments are considered free of toxicity because they all gave a germination of over 80%. Applying 70% composts of M1 or M2 combining with chemical nitrogen fertilizer replaced for 30% of nitrogen in compost to soil significantly increased the growth and yield of cucumber. The agricultural by-products should thus be converted into nutritious compost which is healthy food feeding soil and crops to contribute to closing the food chain in circular agriculture, protecting environment, and developing agriculture production sustainably.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment