Tuning the k value in k-nearest neighbors for malware detection

Mosleh M. Abualhaj, A. Abu-Shareha, Qusai Y. Shambour, S. Al-Khatib, Mohammad O. Hiari
{"title":"Tuning the k value in k-nearest neighbors for malware detection","authors":"Mosleh M. Abualhaj, A. Abu-Shareha, Qusai Y. Shambour, S. Al-Khatib, Mohammad O. Hiari","doi":"10.11591/ijai.v13.i2.pp2275-2282","DOIUrl":null,"url":null,"abstract":"Malicious software, also referred to as malware, poses a serious threat to computer networks, user privacy, and user systems. Effective cybersecurity depends on the correct detection and classification of malware. In order to improve its effectiveness, the K-Nearest Neighbors (KNN) method is applied systematically in this study to the task of malware detection. The study investigates the effect of the number of neighbors (K) parameter on the KNN's performance. MalMem-2022 malware datasets and relevant evaluation criteria like accuracy, precision, recall, and F1-score will be used to assess the efficacy of the suggested technique. The experiments evaluate how parameter tuning affects the accuracy of malware detection by comparing the performance of various parameter setups. The study findings show that careful parameter adjustment considerably boosts the KNN method's malware detection capability. The research also highlights the potential of KNN with parameter adjustment as a useful tool for malware detection in real-world circumstances, allowing for prompt and precise identification of malware.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"10 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2275-2282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malicious software, also referred to as malware, poses a serious threat to computer networks, user privacy, and user systems. Effective cybersecurity depends on the correct detection and classification of malware. In order to improve its effectiveness, the K-Nearest Neighbors (KNN) method is applied systematically in this study to the task of malware detection. The study investigates the effect of the number of neighbors (K) parameter on the KNN's performance. MalMem-2022 malware datasets and relevant evaluation criteria like accuracy, precision, recall, and F1-score will be used to assess the efficacy of the suggested technique. The experiments evaluate how parameter tuning affects the accuracy of malware detection by comparing the performance of various parameter setups. The study findings show that careful parameter adjustment considerably boosts the KNN method's malware detection capability. The research also highlights the potential of KNN with parameter adjustment as a useful tool for malware detection in real-world circumstances, allowing for prompt and precise identification of malware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整 k 近邻中的 k 值以检测恶意软件
恶意软件(也称为恶意软件)对计算机网络、用户隐私和用户系统构成严重威胁。有效的网络安全取决于对恶意软件的正确检测和分类。为了提高其有效性,本研究将 K-Nearest Neighbors (KNN) 方法系统地应用于恶意软件检测任务中。本研究探讨了邻居数(K)参数对 KNN 性能的影响。将使用 MalMem-2022 恶意软件数据集和相关评估标准(如准确率、精确度、召回率和 F1 分数)来评估所建议技术的功效。实验通过比较各种参数设置的性能,评估参数调整如何影响恶意软件检测的准确性。研究结果表明,精心的参数调整大大提高了 KNN 方法的恶意软件检测能力。这项研究还凸显了参数调整 KNN 作为实际环境中恶意软件检测的有用工具的潜力,可以迅速准确地识别恶意软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FinTech forecasting using an evolving connectionist system for lenders and borrowers: ecosystem behavior Dealing imbalance dataset problem in sentiment analysis of recession in Indonesia A survey on planet leaf disease identification and classification by various machine-learning technique Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+ Feature selection techniques for microarray dataset: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1