{"title":"Multi-view graph-based interview representation to improve depression level estimation.","authors":"Navneet Agarwal, Gaël Dias, Sonia Dollfus","doi":"10.1186/s40708-024-00227-w","DOIUrl":null,"url":null,"abstract":"<p><p>Depression is a serious mental illness that affects millions worldwide and consequently has attracted considerable research interest in recent years. Within the field of automated depression estimation, most researchers focus on neural network architectures while ignoring other research directions. Within this paper, we explore an alternate approach and study the impact of input representations on the learning ability of the models. In particular, we work with graph-based representations to highlight different aspects of input transcripts, both at the interview and corpus levels. We use sentence similarity graphs and keyword correlation graphs to exemplify the advantages of graphical representations over sequential models for binary classification problems within depression estimation. Additionally, we design multi-view architectures that split interview transcripts into question and answer views in order to take into account dialogue structure. Our experiments show the benefits of multi-view based graphical input encodings over sequential models and provide new state-of-the-art results for binary classification on the gold standard DAIC-WOZ dataset. Further analysis establishes our method as a means for generating meaningful insights and visual summaries of interview transcripts that can be used by medical professionals.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"14"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00227-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Depression is a serious mental illness that affects millions worldwide and consequently has attracted considerable research interest in recent years. Within the field of automated depression estimation, most researchers focus on neural network architectures while ignoring other research directions. Within this paper, we explore an alternate approach and study the impact of input representations on the learning ability of the models. In particular, we work with graph-based representations to highlight different aspects of input transcripts, both at the interview and corpus levels. We use sentence similarity graphs and keyword correlation graphs to exemplify the advantages of graphical representations over sequential models for binary classification problems within depression estimation. Additionally, we design multi-view architectures that split interview transcripts into question and answer views in order to take into account dialogue structure. Our experiments show the benefits of multi-view based graphical input encodings over sequential models and provide new state-of-the-art results for binary classification on the gold standard DAIC-WOZ dataset. Further analysis establishes our method as a means for generating meaningful insights and visual summaries of interview transcripts that can be used by medical professionals.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing