{"title":"Design of an on-chip wavelength conversion device assisted by an erbium-ytterbium co-doped waveguide amplifier.","authors":"Chen Zhou, Xiwen He, Mingyue Xiao, Deyue Ma, Weibiao Chen, Zhiping Zhou","doi":"10.1007/s12200-024-00118-2","DOIUrl":null,"url":null,"abstract":"<p><p>In current documented studies, it has been observed that wavelength converters utilizing AlGaAsOI waveguides exhibit suboptimal on-chip wavelength conversion efficiency from the C-band to the 2 μm band, generally falling below -20.0 dB. To address this issue, we present a novel wavelength conversion device assisted by a waveguide amplifier, incorporating both AlGaAs wavelength converter and erbium-ytterbium co-doped waveguide amplifier, thereby achieving a notable conversion efficiency exceeding 0 dB. The noteworthy enhancement in efficiency can be attributed to the specific dispersion design of the AlGaAs wavelength converter, which enables an upsurge in conversion efficiency to -15.54 dB under 100 mW of pump power. Furthermore, the integration of an erbium-ytterbium co-doped waveguide amplifier facilitates a loss compensation of over 15 dB. Avoiding the use of external optical amplifiers, this device enables efficient and high-bandwidth wavelength conversion, showing promising applications in various fields, such as optical communication, sensing, imaging, and beyond.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"16"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00118-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In current documented studies, it has been observed that wavelength converters utilizing AlGaAsOI waveguides exhibit suboptimal on-chip wavelength conversion efficiency from the C-band to the 2 μm band, generally falling below -20.0 dB. To address this issue, we present a novel wavelength conversion device assisted by a waveguide amplifier, incorporating both AlGaAs wavelength converter and erbium-ytterbium co-doped waveguide amplifier, thereby achieving a notable conversion efficiency exceeding 0 dB. The noteworthy enhancement in efficiency can be attributed to the specific dispersion design of the AlGaAs wavelength converter, which enables an upsurge in conversion efficiency to -15.54 dB under 100 mW of pump power. Furthermore, the integration of an erbium-ytterbium co-doped waveguide amplifier facilitates a loss compensation of over 15 dB. Avoiding the use of external optical amplifiers, this device enables efficient and high-bandwidth wavelength conversion, showing promising applications in various fields, such as optical communication, sensing, imaging, and beyond.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more