Insights into Prime Editing Technology: A Deep Dive into Fundamentals, Potentials, and Challenges.

IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Human gene therapy Pub Date : 2024-07-01 DOI:10.1089/hum.2024.043
Seyed Younes Hosseini, Rahul Mallick, Petri Mäkinen, Seppo Ylä-Herttuala
{"title":"Insights into Prime Editing Technology: A Deep Dive into Fundamentals, Potentials, and Challenges.","authors":"Seyed Younes Hosseini, Rahul Mallick, Petri Mäkinen, Seppo Ylä-Herttuala","doi":"10.1089/hum.2024.043","DOIUrl":null,"url":null,"abstract":"<p><p>As the most versatile and precise gene editing technology, prime editing (PE) can establish a durable cure for most human genetic disorders. Several generations of PE have been developed based on an editor machine or prime editing guide RNA (pegRNA) to achieve any kind of genetic correction. However, due to the early stage of development, PE complex elements need to be optimized for more efficient editing. Smart optimization of editor proteins as well as pegRNA has been contemplated by many researchers, but the universal PE machine's current shortcomings remain to be solved. The modification of PE elements, fine-tuning of the host genes, manipulation of epigenetics, and blockage of immune responses could be used to reach more efficient PE. Moreover, the host factors involved in the PE process, such as repair and innate immune system genes, have not been determined, and PE cell context dependency is still poorly understood. Regarding the large size of the PE elements, delivery is a significant challenge and the development of a universal viral or nonviral platform is still far from complete. PE versions with shortened variants of reverse transcriptase are still too large to fit in common viral vectors. Overall, PE faces challenges in optimization for efficiency, high context dependency during the cell cycling, and delivery due to the large size of elements. In addition, immune responses, unpredictability of outcomes, and off-target effects further limit its application, making it essential to address these issues for broader use in nonpersonalized gene editing. Besides, due to the limited number of suitable animal models and computational modeling, the prediction of the PE process remains challenging. In this review, the fundamentals of PE, including generations, potential, optimization, delivery, <i>in vivo</i> barriers, and the future landscape of the technology are discussed.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2024.043","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As the most versatile and precise gene editing technology, prime editing (PE) can establish a durable cure for most human genetic disorders. Several generations of PE have been developed based on an editor machine or prime editing guide RNA (pegRNA) to achieve any kind of genetic correction. However, due to the early stage of development, PE complex elements need to be optimized for more efficient editing. Smart optimization of editor proteins as well as pegRNA has been contemplated by many researchers, but the universal PE machine's current shortcomings remain to be solved. The modification of PE elements, fine-tuning of the host genes, manipulation of epigenetics, and blockage of immune responses could be used to reach more efficient PE. Moreover, the host factors involved in the PE process, such as repair and innate immune system genes, have not been determined, and PE cell context dependency is still poorly understood. Regarding the large size of the PE elements, delivery is a significant challenge and the development of a universal viral or nonviral platform is still far from complete. PE versions with shortened variants of reverse transcriptase are still too large to fit in common viral vectors. Overall, PE faces challenges in optimization for efficiency, high context dependency during the cell cycling, and delivery due to the large size of elements. In addition, immune responses, unpredictability of outcomes, and off-target effects further limit its application, making it essential to address these issues for broader use in nonpersonalized gene editing. Besides, due to the limited number of suitable animal models and computational modeling, the prediction of the PE process remains challenging. In this review, the fundamentals of PE, including generations, potential, optimization, delivery, in vivo barriers, and the future landscape of the technology are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深入了解基因编辑技术:深入探讨基本原理、潜力和挑战。
作为最通用、最精确的基因编辑技术,基因编辑(prime editing,PE)可以持久治愈大多数人类遗传疾病。目前已开发出几代基于编辑机或 pegRNA 的基因编辑技术,可实现各种基因校正。然而,由于处于早期开发阶段,PE 的复杂元件需要优化,以提高编辑效率。许多研究人员都在考虑对编辑蛋白和 pegRNA 进行智能优化,但通用 PE 机器目前的缺陷仍有待解决。可以通过修改 PE 元素、微调宿主基因、操纵表观遗传学和阻断免疫反应来实现更高效的素编辑。此外,参与 PE 过程的宿主因子(如修复和先天免疫系统基因)尚未确定,PE 细胞的环境依赖性仍不甚明了。由于 PE 元件体积庞大,传递是一项重大挑战,通用病毒或非病毒平台的开发工作仍远未完成。带有 RT 缩短变体的 PE 版本仍然太大,无法装入普通病毒载体。新版本应考虑到针对 PE 元件和输送载体的免疫反应。为筛选和验证目的,对主要编辑过程的预测仍有待改进。本综述将讨论 PE 的基本原理,包括世代、潜力、优化、传递、体内障碍以及该技术的未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human gene therapy
Human gene therapy 医学-生物工程与应用微生物
CiteScore
6.50
自引率
4.80%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
期刊最新文献
Inhalation of SP-101 Followed by Inhaled Doxorubicin Results in Robust and Durable hCFTRΔR Transgene Expression in the Airways of Wild-Type and Cystic Fibrosis Ferrets. Unconstrained precision mitochondrial genome editing with αDdCBEs. SP-101, A Novel Adeno-Associated Virus Gene Therapy for the Treatment of Cystic Fibrosis, Mediates Functional Correction of Primary Human Airway Epithelia From Donors with Cystic Fibrosis. Lipid Nanoparticles for Nucleic Acid Delivery Beyond the Liver. Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1