首页 > 最新文献

Human gene therapy最新文献

英文 中文
Inhalation of SP-101 Followed by Inhaled Doxorubicin Results in Robust and Durable hCFTRΔR Transgene Expression in the Airways of Wild-Type and Cystic Fibrosis Ferrets. 吸入 SP-101 后再吸入多柔比星,可在野生型和囊性纤维化雪貂的气道中产生强大而持久的 hCFTRΔR 转基因表达。
IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-04 DOI: 10.1089/hum.2024.064
Katherine J D A Excoffon, Mark D Smith, Lillian Falese, Robert Schulingkamp, Shen Lin, Madhu Mahankali, Poornima K L Narayan, Matthew R Glatfelter, Maria P Limberis, Eric Yuen, Roland Kolbeck

Cystic fibrosis (CF) is a serious genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Approved small molecule therapies benefit the majority of people with CF (pwCF), but unfortunately not all. Gene addition offers a mutation agnostic treatment option for all pwCF. SP-101 is an adeno-associated virus gene therapy vector (AAV2.5T) that has been optimized for efficient human airway cell transduction, and that contains a functional and regulated shortened human CFTR minigene (hCFTRΔR) with a small synthetic promoter/enhancer. To understand SP-101 airway distribution, activity, and the associated immune response, in vivo studies were performed in wild-type and CF ferrets. After single dose inhaled delivery of SP-101, followed by single dose inhaled doxorubicin (an AAV transduction augmenter) or saline, SP-101 vector genomes were detected throughout the respiratory tract. hCFTRΔR mRNA expression was highest in ferrets also receiving doxorubicin and persisted for the duration of the study (13 weeks). Pre-existing mucus in the CF ferrets did not present a barrier to effective transduction. Binding and neutralizing antibodies to the AAV2.5T capsid were observed regardless of doxorubicin exposure. Only a portion of ferrets exhibited a weak T-cell response to AAV2.5T and no T-cell response was seen against hCFTRΔR. These data strongly support the continued development of inhaled SP-101, followed by inhaled doxorubicin, for the treatment of CF.

囊性纤维化(CF)是一种严重的遗传性疾病,由囊性纤维化跨膜传导调节器(CFTR)基因突变引起。已获批准的小分子疗法可使大多数囊性纤维化患者(pwCF)受益,但遗憾的是,并非所有患者都能受益。基因添加疗法为所有 CF 患者提供了与基因突变无关的治疗选择。SP-101 是一种腺相关病毒基因治疗载体 (AAV2.5T),已针对高效的人类气道细胞转导进行了优化,它包含一个具有功能性和调控性的缩短的人类 CFTR 小基因 (hCFTRΔR),并带有一个小型合成启动子/增强子。为了了解 SP-101 的气道分布、活性和相关免疫反应,我们在野生型和 CF 雪貂体内进行了研究。在吸入单剂量 SP-101 后,再吸入单剂量多柔比星(一种 AAV 转导增强剂)或生理盐水,整个呼吸道都能检测到 SP-101 向量基因组。CF 雪貂体内预先存在的粘液并没有阻碍有效的转导。无论是否暴露于多柔比星,都能观察到与 AAV2.5T 外壳的结合和中和抗体。只有部分雪貂对 AAV2.5T 表现出微弱的 T 细胞反应,而对 hCFTRΔR 则未出现 T 细胞反应。这些数据有力地支持了吸入 SP-101 和吸入多柔比星治疗囊性纤维化的持续发展。
{"title":"Inhalation of SP-101 Followed by Inhaled Doxorubicin Results in Robust and Durable <i>hCFTRΔR</i> Transgene Expression in the Airways of Wild-Type and Cystic Fibrosis Ferrets.","authors":"Katherine J D A Excoffon, Mark D Smith, Lillian Falese, Robert Schulingkamp, Shen Lin, Madhu Mahankali, Poornima K L Narayan, Matthew R Glatfelter, Maria P Limberis, Eric Yuen, Roland Kolbeck","doi":"10.1089/hum.2024.064","DOIUrl":"10.1089/hum.2024.064","url":null,"abstract":"<p><p>Cystic fibrosis (CF) is a serious genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Approved small molecule therapies benefit the majority of people with CF (pwCF), but unfortunately not all. Gene addition offers a mutation agnostic treatment option for all pwCF. SP-101 is an adeno-associated virus gene therapy vector (AAV2.5T) that has been optimized for efficient human airway cell transduction, and that contains a functional and regulated shortened human CFTR minigene (<i>hCFTRΔR</i>) with a small synthetic promoter/enhancer. To understand SP-101 airway distribution, activity, and the associated immune response, <i>in vivo</i> studies were performed in wild-type and CF ferrets. After single dose inhaled delivery of SP-101, followed by single dose inhaled doxorubicin (an AAV transduction augmenter) or saline, SP-101 vector genomes were detected throughout the respiratory tract. <i>hCFTRΔR</i> mRNA expression was highest in ferrets also receiving doxorubicin and persisted for the duration of the study (13 weeks). Pre-existing mucus in the CF ferrets did not present a barrier to effective transduction. Binding and neutralizing antibodies to the AAV2.5T capsid were observed regardless of doxorubicin exposure. Only a portion of ferrets exhibited a weak T-cell response to AAV2.5T and no T-cell response was seen against hCFTRΔR. These data strongly support the continued development of inhaled SP-101, followed by inhaled doxorubicin, for the treatment of CF.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unconstrained precision mitochondrial genome editing with αDdCBEs. 利用 αDdCBEs 进行无约束精准线粒体基因组编辑。
IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-30 DOI: 10.1089/hum.2024.073
Santiago R Castillo, Brandon W Simone, Karl J Clark, Patricia Devaux, Stephen C Ekker

DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs work in pairs, with each arm composed of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants. Nonetheless, given the intrinsic properties of TALE proteins, several target sites in human mtDNA are predicted to remain out of reach to DdCBEs and other TALE-based technologies. Specifically, due to the conventional requirement for a thymine immediately upstream of the TALE target sequences (i.e., the 5'-T constraint), over 150 loci in the human mitochondrial genome are presumed to be inaccessible to DdCBEs. Previous attempts at circumventing this requirement, either by developing monomeric DdCBEs or utilizing DNA-binding domains alternative to TALEs, have resulted in suboptimal specificity profiles with reduced therapeutic potential. Here, aiming to challenge and elucidate the relevance of the 5'-T constraint in the context of DdCBE-mediated mtDNA editing, and to expand the range of motifs that are editable by this technology, we generated DdCBEs containing TALE proteins engineered to recognize all 5' bases. These modified DdCBEs are herein referred to as αDdCBEs. Notably, 5'-T-noncompliant canonical DdCBEs efficiently edited mtDNA at diverse loci. However, they were frequently outperformed by αDdCBEs, which exhibited significant improvements in activity and specificity, regardless of the most 5' bases of their TALE binding sites. Furthermore, we showed that αDdCBEs are compatible with the enhanced DddAtox variants DddA6 and DddA11, and we validated TALE shifting with αDdCBEs as an effective approach to optimize base editing outcomes. Overall, αDdCBEs enable efficient, specific, and unconstrained mitochondrial base editing.

DddA 衍生胞嘧啶碱基编辑器(DdCBEs)能有针对性地将线粒体 DNA(mtDNA)中的 C-G 转换为 T-A。DdCBEs 成对工作,每个臂由一个类似转录激活剂的效应器 (TALE)、半个分裂的双链 DNA 去氨酶和一个尿嘧啶糖基化酶抑制剂组成。这项开创性技术有助于我们更好地了解涉及 mtDNA 的细胞过程,并为开发由致病性 mtDNA 变体引起的遗传疾病的模型和疗法铺平了道路。尽管如此,鉴于 TALE 蛋白的固有特性,人类 mtDNA 中的一些靶位点仍无法被 DdCBE 和其他基于 TALE 的技术所触及。具体来说,由于 TALE 目标序列上游必须有一个胸腺嘧啶的传统要求(即 5'-T 限制),人类线粒体基因组中超过 150 个位点被认为是 DdCBE 无法访问的。以前有人试图通过开发单体 DdCBE 或利用 DNA 结合域替代 TALE 来规避这一要求,但结果都是特异性不理想,治疗潜力降低。为了挑战和阐明 5'-T 约束在 DdCBE 介导的 mtDNA 编辑中的相关性,并扩大该技术可编辑的基团范围,我们生成了含有 TALE 蛋白的 DdCBE,这些 TALE 蛋白经过工程化处理后可识别所有 5' 碱基。这些经过修饰的 DdCBE 在此称为 αDdCBE。值得注意的是,不符合5'-T规范的DdCBE能有效编辑不同位点的mtDNA。然而,αDdCBEs 的表现却常常优于它们,无论它们的 TALE 结合位点的 5' 碱基是多少,αDdCBEs 的活性和特异性都有显著提高。此外,我们还发现 αDdCBE 与增强型 DddAtox 变体 DddA6 和 DddA11 兼容,并验证了 TALE 与 αDdCBE 的转移是优化碱基编辑结果的有效方法。总之,αDdCBEs 可以实现高效、特异和无约束的线粒体碱基编辑。
{"title":"Unconstrained precision mitochondrial genome editing with αDdCBEs.","authors":"Santiago R Castillo, Brandon W Simone, Karl J Clark, Patricia Devaux, Stephen C Ekker","doi":"10.1089/hum.2024.073","DOIUrl":"10.1089/hum.2024.073","url":null,"abstract":"<p><p>DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs work in pairs, with each arm composed of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants. Nonetheless, given the intrinsic properties of TALE proteins, several target sites in human mtDNA are predicted to remain out of reach to DdCBEs and other TALE-based technologies. Specifically, due to the conventional requirement for a thymine immediately upstream of the TALE target sequences (i.e., the 5'-T constraint), over 150 loci in the human mitochondrial genome are presumed to be inaccessible to DdCBEs. Previous attempts at circumventing this requirement, either by developing monomeric DdCBEs or utilizing DNA-binding domains alternative to TALEs, have resulted in suboptimal specificity profiles with reduced therapeutic potential. Here, aiming to challenge and elucidate the relevance of the 5'-T constraint in the context of DdCBE-mediated mtDNA editing, and to expand the range of motifs that are editable by this technology, we generated DdCBEs containing TALE proteins engineered to recognize all 5' bases. These modified DdCBEs are herein referred to as αDdCBEs. Notably, 5'-T-noncompliant canonical DdCBEs efficiently edited mtDNA at diverse loci. However, they were frequently outperformed by αDdCBEs, which exhibited significant improvements in activity and specificity, regardless of the most 5' bases of their TALE binding sites. Furthermore, we showed that αDdCBEs are compatible with the enhanced DddAtox variants DddA6 and DddA11, and we validated TALE shifting with αDdCBEs as an effective approach to optimize base editing outcomes. Overall, αDdCBEs enable efficient, specific, and unconstrained mitochondrial base editing.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142106920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SP-101, A Novel Adeno-Associated Virus Gene Therapy for the Treatment of Cystic Fibrosis, Mediates Functional Correction of Primary Human Airway Epithelia From Donors with Cystic Fibrosis. SP-101 是一种用于治疗囊性纤维化的新型腺相关病毒基因疗法,可介导来自囊性纤维化供体的原发性人类气道上皮细胞的功能矫正。
IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-29 DOI: 10.1089/hum.2024.063
Katherine Jda Excoffon, Shen Lin, Poornima Kotha Lakshmi Narayan, Sneha Sitaraman, Awal M Jimah, Tyler T Fallon, Melane L James, Matthew R Glatfelter, Maria P Limberis, Mark D Smith, Guia Guffanti, Roland Kolbeck

Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Although CF affects multiple organs, lung disease is the main cause of morbidity and mortality, and gene therapy is expected to provide a mutation-agnostic option for treatment. SP-101 is a recombinant adeno-associated virus (AAV) gene therapy vector carrying a human CFTR minigene, hCFTRΔR, and is being investigated as an inhalation treatment for people with CF. To further understand SP-101 activity, in vitro studies were performed in human airway epithelia (HAE) derived from multiple CF and non-CF donors. SP-101 restored CFTR-mediated chloride conductance, measured via Ussing chamber assay, at a multiplicity of infection (MOI) as low as 5E2 in the presence of doxorubicin, a small molecule known to augment AAV transduction. Functional correction of CF HAE increased with increasing MOI and doxorubicin concentration and correlated with increasing cell-associated vector genomes and hCFTRΔR mRNA expression. Tropism studies using a fluorescent reporter vector and single-cell mRNA sequencing of SP-101-mediated hCFTRΔR mRNA demonstrated broad expression in all cell types after apical transduction, including secretory, ciliated, and basal cells. In summary, SP-101, particularly in combination with doxorubicin, shows promise for a novel CF treatment strategy and strongly supports continued development.

囊性纤维化(CF)是由编码 CF 跨膜传导调节器(CFTR)蛋白的基因突变引起的。虽然 CF 会影响多个器官,但肺部疾病是发病和死亡的主要原因,基因疗法有望为治疗提供一种与基因突变无关的选择。SP-101是一种重组腺相关病毒(AAV)基因治疗载体,携带人类CFTR迷你基因hCFTRΔR,目前正被研究用于CF患者的吸入治疗。为了进一步了解 SP-101 的活性,我们在多个 CF 和非 CF 供体的人体气道上皮细胞中进行了体外研究。在已知可增强 AAV 转导的小分子多柔比星存在的情况下,SP-101 可在低至 5e2 的感染倍率(MOI)下恢复 CFTR 介导的氯传导(通过乌星室测定法测量)。CF HAE的功能校正随着MOI和多柔比星浓度的增加而增加,并与细胞相关载体基因组和hCFTRΔR mRNA表达的增加相关。使用荧光报告载体进行的转座研究和 SP-101 介导的 hCFTRΔR mRNA 的单细胞 mRNA 测序表明,顶端转导后,包括分泌细胞、纤毛细胞和基底细胞在内的所有细胞类型都有广泛的表达。总之,SP-101(尤其是与多柔比星联合使用)有望成为一种新型的 CF 治疗策略,我们强烈支持继续开发这种药物。
{"title":"SP-101, A Novel Adeno-Associated Virus Gene Therapy for the Treatment of Cystic Fibrosis, Mediates Functional Correction of Primary Human Airway Epithelia From Donors with Cystic Fibrosis.","authors":"Katherine Jda Excoffon, Shen Lin, Poornima Kotha Lakshmi Narayan, Sneha Sitaraman, Awal M Jimah, Tyler T Fallon, Melane L James, Matthew R Glatfelter, Maria P Limberis, Mark D Smith, Guia Guffanti, Roland Kolbeck","doi":"10.1089/hum.2024.063","DOIUrl":"10.1089/hum.2024.063","url":null,"abstract":"<p><p>Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Although CF affects multiple organs, lung disease is the main cause of morbidity and mortality, and gene therapy is expected to provide a mutation-agnostic option for treatment. SP-101 is a recombinant adeno-associated virus (AAV) gene therapy vector carrying a human <i>CFTR</i> minigene, <i>hCFTRΔR</i>, and is being investigated as an inhalation treatment for people with CF. To further understand SP-101 activity, <i>in vitro</i> studies were performed in human airway epithelia (HAE) derived from multiple CF and non-CF donors. SP-101 restored CFTR-mediated chloride conductance, measured via Ussing chamber assay, at a multiplicity of infection (MOI) as low as 5E2 in the presence of doxorubicin, a small molecule known to augment AAV transduction. Functional correction of CF HAE increased with increasing MOI and doxorubicin concentration and correlated with increasing cell-associated vector genomes and <i>hCFTRΔR</i> mRNA expression. Tropism studies using a fluorescent reporter vector and single-cell mRNA sequencing of SP-101-mediated <i>hCFTRΔR</i> mRNA demonstrated broad expression in all cell types after apical transduction, including secretory, ciliated, and basal cells. In summary, SP-101, particularly in combination with doxorubicin, shows promise for a novel CF treatment strategy and strongly supports continued development.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies. 腺相关病毒载体--细胞免疫和体液免疫的靶标--正在向造血干细胞改造和免疫疗法领域拓展。
IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-28 DOI: 10.1089/hum.2024.114
Angela E Araujo, Martin Bentler, Xabier Perez Garmendia, Asma Kaleem, Claire Fabian, Michael Morgan, Ulrich T Hacker, Hildegard Büning

All current market-approved gene therapy medical products for in vivo gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.

目前市场上批准用于单基因疾病体内基因治疗的所有基因治疗医疗产品都依赖于腺相关病毒(AAV)载体。基因编辑技术和载体工程学的进步扩大了靶细胞的范围,从而也扩大了可治疗疾病的范围。因此,AAV 载体目前正被用于改造造血系统细胞,包括造血干细胞和祖细胞(HSPCs),以开发治疗单基因疾病的新策略,同时也用于产生以细胞和疫苗为基础的免疫疗法。然而,AAV载体系统的重要新靶点细胞类型主要参与了针对载体及其转基因产物的免疫反应,本综述的第一部分对此进行了简要讨论。第二部分将介绍探索 AAV 载体用于 HSPC、T 淋巴细胞和 B 淋巴细胞等基因工程的研究。
{"title":"Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies.","authors":"Angela E Araujo, Martin Bentler, Xabier Perez Garmendia, Asma Kaleem, Claire Fabian, Michael Morgan, Ulrich T Hacker, Hildegard Büning","doi":"10.1089/hum.2024.114","DOIUrl":"https://doi.org/10.1089/hum.2024.114","url":null,"abstract":"<p><p>All current market-approved gene therapy medical products for <i>in vivo</i> gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid Nanoparticles for Nucleic Acid Delivery Beyond the Liver. 用于在肝脏外输送核酸的脂质纳米颗粒。
IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-28 DOI: 10.1089/hum.2024.106
Nadine Saber, Mariona Estapé Senti, Raymond M Schiffelers

Lipid nanoparticles (LNPs) are the most clinically advanced drug delivery system for nucleic acid therapeutics, exemplified by the success of the COVID-19 mRNA vaccines. However, their clinical use is currently limited to hepatic diseases and vaccines due to their tendency to accumulate in the liver upon intravenous administration. To fully leverage their potential, it is essential to understand and address their liver tropism, while also developing strategies to enhance delivery to tissues beyond the liver. Ensuring that these therapeutics reach their target cells while avoiding off-target cells is essential for both their efficacy and safety. There are three potential targeting strategies-passive, active, and endogenous-which can be used individually or in combination to target nonhepatic tissues. In this review, we delve into the recent advancements in LNP engineering for delivering nucleic acid beyond the liver.

脂质纳米颗粒是临床上最先进的核酸治疗药物递送系统,COVID-19 mRNA 疫苗的成功就是例证。然而,由于脂质纳米颗粒在静脉注射时容易在肝脏中蓄积,因此其临床应用目前仅限于肝脏疾病和疫苗。要充分发挥它们的潜力,就必须了解并解决它们的肝脏滋养性问题,同时还要制定策略,加强向肝脏以外组织的输送。确保这些疗法到达靶细胞,同时避免脱靶细胞,对其疗效和安全性至关重要。目前有三种潜在的靶向策略--被动靶向、主动靶向和内源性靶向--可单独或组合使用,以靶向非肝脏组织。在这篇综述中,我们将深入探讨脂质纳米粒子工程学在向肝外输送核酸方面的最新进展。
{"title":"Lipid Nanoparticles for Nucleic Acid Delivery Beyond the Liver.","authors":"Nadine Saber, Mariona Estapé Senti, Raymond M Schiffelers","doi":"10.1089/hum.2024.106","DOIUrl":"10.1089/hum.2024.106","url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) are the most clinically advanced drug delivery system for nucleic acid therapeutics, exemplified by the success of the COVID-19 mRNA vaccines. However, their clinical use is currently limited to hepatic diseases and vaccines due to their tendency to accumulate in the liver upon intravenous administration. To fully leverage their potential, it is essential to understand and address their liver tropism, while also developing strategies to enhance delivery to tissues beyond the liver. Ensuring that these therapeutics reach their target cells while avoiding off-target cells is essential for both their efficacy and safety. There are three potential targeting strategies-passive, active, and endogenous-which can be used individually or in combination to target nonhepatic tissues. In this review, we delve into the recent advancements in LNP engineering for delivering nucleic acid beyond the liver.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alpharetroviral Vector-Mediated Gene Therapy for IL7RA-Deficient Severe Combined Immunodeficiency. 以 Alpharetroviral 向量为介导的基因疗法治疗 IL7RA 缺乏性 SCID。
IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-27 DOI: 10.1089/hum.2024.103
Teng-Cheong Ha, Michael A Morgan, Adrian J Thrasher, Axel Schambach

Severe combined immunodeficiency (SCID) encompasses rare primary immunodeficiency disorders characterized by deficient T-cell development, which leads to a severely compromised immune system and susceptibility to life-threatening infections. Among SCID subtypes, IL7RA-SCID is caused by mutations in the interleukin 7 receptor alpha chain (IL7RA) and represents a significant subset of patients with limited treatment options. This study investigated the efficacy of a self-inactivating (SIN) alpharetroviral vector (ARV) engineered to deliver a codon-optimized IL7RA cDNA to restore T-cell development in Il7r-knockout mice. We compared the elongation factor 1 alpha short (EFS) promoter and the lymphoid-restricted Lck promoter for their ability to drive IL7RA expression and found that the EFS promoter enabled robust and sustained IL7RA expression that led to the functional rescue of T-lymphopoiesis in vitro and in vivo. Conversely, though effective in vitro, the Lck promoter failed to produce viable T-cell populations in vivo. Our results highlight the potential of using SIN-ARVs as a gene therapy (GT) strategy for treating IL7RA-SCID. Importantly, sustained production of T-lymphocytes was found in both primary and secondary transplant recipient animals with no adverse effects, supporting the safety and feasibility of this approach. Overall, this study provides valuable insights into the development of GT for IL7RA-SCID and underscores the clinical potential of an EFS-driven SIN-ARV to restore IL7RA-deficient immune function.

严重联合免疫缺陷症(SCID)是一种罕见的原发性免疫缺陷疾病,其特点是 T 细胞发育不全,导致免疫系统严重受损,容易受到危及生命的感染。在SCID亚型中,IL7RA-SCID是由白细胞介素7受体α链(IL7RA)突变引起的,是治疗方案有限的重要患者亚型。本研究调查了一种自失活(SIN)α逆转录病毒载体的疗效,该载体被设计为递送经过密码子优化的IL7RA cDNA,以恢复IL7RA基因敲除小鼠的T细胞发育。我们比较了α短伸长因子(EFS)启动子和淋巴限制性Lck启动子驱动IL7RA表达的能力,发现EFS启动子能使IL7RA得到稳健而持续的表达,从而在体外和体内实现T淋巴细胞生成的功能性拯救。相反,Lck 启动子虽然在体外有效,但在体内却不能产生有活力的 T 细胞群。我们的研究结果凸显了使用 SIN-逆转录病毒载体作为基因治疗(GT)策略治疗 IL7RA-SCID 的潜力。重要的是,在初次和二次移植受体动物中都发现了T淋巴细胞的持续生成,且无不良反应,这支持了这种方法的安全性和可行性。总之,这项研究为IL7RA-SCID基因疗法的开发提供了宝贵的见解,并强调了EFS驱动的SIN-alpharetroviral载体恢复IL7RA缺陷免疫功能的临床潜力。
{"title":"Alpharetroviral Vector-Mediated Gene Therapy for IL7RA-Deficient Severe Combined Immunodeficiency.","authors":"Teng-Cheong Ha, Michael A Morgan, Adrian J Thrasher, Axel Schambach","doi":"10.1089/hum.2024.103","DOIUrl":"10.1089/hum.2024.103","url":null,"abstract":"<p><p>Severe combined immunodeficiency (SCID) encompasses rare primary immunodeficiency disorders characterized by deficient T-cell development, which leads to a severely compromised immune system and susceptibility to life-threatening infections. Among SCID subtypes, IL7RA-SCID is caused by mutations in the interleukin 7 receptor alpha chain (IL7RA) and represents a significant subset of patients with limited treatment options. This study investigated the efficacy of a self-inactivating (SIN) alpharetroviral vector (ARV) engineered to deliver a codon-optimized <i>IL7RA</i> cDNA to restore T-cell development in <i>Il7r</i>-knockout mice. We compared the elongation factor 1 alpha short (EFS) promoter and the lymphoid-restricted Lck promoter for their ability to drive IL7RA expression and found that the EFS promoter enabled robust and sustained IL7RA expression that led to the functional rescue of T-lymphopoiesis <i>in vitro</i> and <i>in vivo</i>. Conversely, though effective <i>in vitro</i>, the Lck promoter failed to produce viable T-cell populations <i>in vivo</i>. Our results highlight the potential of using SIN-ARVs as a gene therapy (GT) strategy for treating IL7RA-SCID. Importantly, sustained production of T-lymphocytes was found in both primary and secondary transplant recipient animals with no adverse effects, supporting the safety and feasibility of this approach. Overall, this study provides valuable insights into the development of GT for IL7RA-SCID and underscores the clinical potential of an EFS-driven SIN-ARV to restore IL7RA-deficient immune function.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene Editing by Ferrying of CRISPR/Cas Ribonucleoprotein Complexes in Enveloped Virus-Derived Particles. 通过CRISPR/Cas核糖核蛋白复合物在包膜病毒衍生颗粒中的运输进行基因编辑。
IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-27 DOI: 10.1089/hum.2024.105
Jacob Hørlück Janns, Jacob Giehm Mikkelsen

The invention of next-generation CRISPR/Cas gene editing tools, like base and prime editing, for correction of gene variants causing disease, has created hope for in vivo use in patients leading to wider clinical translation. To realize this potential, delivery vehicles that can ferry gene editing tool kits safely and effectively into specific cell populations or tissues are in great demand. In this review, we describe the development of enveloped retrovirus-derived particles as carriers of "ready-to-work" ribonucleoprotein complexes consisting of Cas9-derived editor proteins and single guide RNAs. We present arguments for adapting viruses for cell-targeted protein delivery and describe the status after a decade-long development period, which has already shown effective editing in primary cells, including T cells and hematopoietic stem cells, and in tissues targeted in vivo, including mouse retina, liver, and brain. Emerging evidence has demonstrated that engineered virus-derived nanoparticles can accommodate both base and prime editors and seems to fertilize a sprouting hope that such particles can be further developed and produced in large scale for therapeutic applications.

下一代 CRISPR/Cas 基因编辑工具(如碱基和质粒编辑)的发明,为纠正导致疾病的基因变异带来了在患者体内使用的希望,从而实现更广泛的临床转化。为了实现这一潜力,我们亟需能将基因编辑工具包安全有效地送入特定细胞群或组织的运载工具。在这里,我们介绍了开发包膜逆转录病毒衍生颗粒,作为由 Cas9 衍生编辑蛋白和单个引导 RNA 组成的 "即用型 "核糖核蛋白复合物的载体。我们提出了将病毒用于细胞靶向蛋白递送的论点,并描述了经过长达十年的开发后的现状。病毒已经在原代细胞(包括 T 细胞和造血干细胞)和体内靶向组织(包括小鼠视网膜、肝脏和大脑)中显示出有效的编辑效果。新的证据表明,病毒衍生的工程纳米粒子既可用于基础编辑,也可用于主要编辑,这似乎萌发了进一步开发和大规模生产此类粒子用于治疗应用的希望。
{"title":"Gene Editing by Ferrying of CRISPR/Cas Ribonucleoprotein Complexes in Enveloped Virus-Derived Particles.","authors":"Jacob Hørlück Janns, Jacob Giehm Mikkelsen","doi":"10.1089/hum.2024.105","DOIUrl":"10.1089/hum.2024.105","url":null,"abstract":"<p><p>The invention of next-generation CRISPR/Cas gene editing tools, like base and prime editing, for correction of gene variants causing disease, has created hope for <i>in vivo</i> use in patients leading to wider clinical translation. To realize this potential, delivery vehicles that can ferry gene editing tool kits safely and effectively into specific cell populations or tissues are in great demand. In this review, we describe the development of enveloped retrovirus-derived particles as carriers of \"ready-to-work\" ribonucleoprotein complexes consisting of Cas9-derived editor proteins and single guide RNAs. We present arguments for adapting viruses for cell-targeted protein delivery and describe the status after a decade-long development period, which has already shown effective editing in primary cells, including T cells and hematopoietic stem cells, and in tissues targeted <i>in vivo</i>, including mouse retina, liver, and brain. Emerging evidence has demonstrated that engineered virus-derived nanoparticles can accommodate both base and prime editors and seems to fertilize a sprouting hope that such particles can be further developed and produced in large scale for therapeutic applications.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in MicroRNA Therapeutics: from Preclinical to Clinical Studies. 微RNA疗法的进展:从临床前研究到临床研究。
IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-16 DOI: 10.1089/hum.2024.113
Simona Brillante, Mariagrazia Volpe, Alessia Indrieri

MicroRNAs (miRNAs) are crucial regulators of gene expression involved in various pathophysiological processes. Their ability to modulate multiple pathways simultaneously and their involvement in numerous diseases make miRNAs attractive tools and targets in therapeutic development. Significant efforts have been made to advance miRNA research in the preclinical stage, attracting considerable investment from biopharmaceutical companies. Consequently, an increasing number of miRNA-based therapies have entered clinical trials for both diagnostic and therapeutic applications across a wide range of diseases. While individual miRNAs can regulate a broad array of mRNA targets, this also complicates the management of adverse effects seen in clinical trials. Several candidates have been discontinued due to toxicity concerns, underscoring the need for comprehensive risk assessments of miRNA therapeutics. Despite no miRNA-based strategies have yet received approval from regulatory agencies, prominent progress in the miRNAs modulation approaches and in the nano-delivery systems have been made in the last decade, leading to the development of novel safe and well-tolerated miRNA drug candidates. In this review, we present recent advances in the development of miRNA therapeutics currently in preclinical or clinical stages for treating both rare genetic disorders and multifactorial common conditions. We also address the challenges related to the safety and targeted delivery of miRNA therapies, as well as the identification of the most effective therapeutic candidates in preclinical and clinical trials.

微小核糖核酸(miRNA)是参与各种病理生理过程的基因表达的关键调控因子。miRNAs 能够同时调节多种通路,并参与多种疾病的治疗,这使得 miRNAs 成为极具吸引力的治疗开发工具和靶点。临床前阶段的 miRNA 研究取得了长足进展,吸引了生物制药公司的大量投资。因此,越来越多基于 miRNA 的疗法已进入临床试验阶段,用于多种疾病的诊断和治疗。虽然单个 miRNA 可调控一系列广泛的 mRNA 靶点,但这也使临床试验中出现的不良反应管理变得更加复杂。一些候选药物因毒性问题而停产,这凸显了对 miRNA 疗法进行全面风险评估的必要性。尽管目前还没有基于 miRNA 的策略获得监管机构的批准,但在过去十年中,miRNAs 调控方法和纳米给药系统取得了显著进展,从而开发出了安全、耐受性良好的新型 miRNA 候选药物。在这篇综述中,我们将介绍目前处于临床前或临床阶段的 miRNA 治疗药物开发的最新进展,这些药物可用于治疗罕见遗传疾病和多因素常见疾病。我们还讨论了与 miRNA 疗法的安全性和靶向给药有关的挑战,以及如何在临床前和临床试验中确定最有效的候选疗法。
{"title":"Advances in MicroRNA Therapeutics: from Preclinical to Clinical Studies.","authors":"Simona Brillante, Mariagrazia Volpe, Alessia Indrieri","doi":"10.1089/hum.2024.113","DOIUrl":"https://doi.org/10.1089/hum.2024.113","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are crucial regulators of gene expression involved in various pathophysiological processes. Their ability to modulate multiple pathways simultaneously and their involvement in numerous diseases make miRNAs attractive tools and targets in therapeutic development. Significant efforts have been made to advance miRNA research in the preclinical stage, attracting considerable investment from biopharmaceutical companies. Consequently, an increasing number of miRNA-based therapies have entered clinical trials for both diagnostic and therapeutic applications across a wide range of diseases. While individual miRNAs can regulate a broad array of mRNA targets, this also complicates the management of adverse effects seen in clinical trials. Several candidates have been discontinued due to toxicity concerns, underscoring the need for comprehensive risk assessments of miRNA therapeutics. Despite no miRNA-based strategies have yet received approval from regulatory agencies, prominent progress in the miRNAs modulation approaches and in the nano-delivery systems have been made in the last decade, leading to the development of novel safe and well-tolerated miRNA drug candidates. In this review, we present recent advances in the development of miRNA therapeutics currently in preclinical or clinical stages for treating both rare genetic disorders and multifactorial common conditions. We also address the challenges related to the safety and targeted delivery of miRNA therapies, as well as the identification of the most effective therapeutic candidates in preclinical and clinical trials.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene Editing of the Endogenous Cryptic 3' Splice Site Corrects the RNA Splicing Defect in the β654-Thalassemia Mouse Model. 对内源性隐性 3'剪接位点进行基因编辑可纠正β654-地中海贫血小鼠模型的 RNA 剪接缺陷。
IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-13 DOI: 10.1089/hum.2023.202
Dan Lu, Xiuli Gong, Xinbing Guo, Qin Cai, Yanwen Chen, Yiwen Zhu, Xiao Sang, Hua Yang, Miao Xu, Yitao Zeng, Dali Li, Fanyi Zeng

β654-thalassemia is caused by a point mutation in the second intron (IVS-II) of the β-globin gene that activates a cryptic 3' splice site, leading to incorrect RNA splicing. Our previous study demonstrated that when direct deletion of the β654 mutation sequence or the cryptic 3' splice site in the IVS-II occurs, correct splicing of β-globin mRNA can be restored. Herein, we conducted an in-depth analysis to explore a more precise gene-editing method for treating β654-thalassemia. A single-base substitution of the cryptic 3' acceptor splice site was introduced in the genome of a β654-thalassemia mouse model using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9(Cas9)-mediated homology-directed repair (HDR). All of the HDR-edited mice allow the detection of correctly spliced β-globin mRNA. Pathological changes were improved compared with the nonedited β654 mice. This resulted in a more than twofold increase in the survival rate beyond the weaning age of the mice carrying the β654 allele. The therapeutic effects of this gene-editing strategy showed that the typical β-thalassemia phenotype can be improved in a dose-dependent manner when the frequency of HDR is over 20%. Our research provides a unique and effective method for correcting the splicing defect by gene editing the reactive splicing acceptor site in a β654 mouse model.

β-654-地中海贫血症是由β-球蛋白基因第二个内含子(IVS-II)中的一个点突变引起的,该突变激活了一个隐性 3'剪接位点,从而导致不正确的 RNA 剪接。我们之前的研究表明,当直接删除β654突变序列或IVS-II中的隐性3'剪接位点时,β-球蛋白mRNA的正确剪接可以恢复。在此,我们进行了深入分析,以探索一种更精确的基因编辑方法来治疗β-654-地中海贫血症。我们利用 CRISPR-Cas9 介导的同源定向修复(HDR)技术,在β654-地中海贫血小鼠模型的基因组中引入了一个单碱基替换的隐性 3' 接受剪接位点。所有经过 HDR 编辑的小鼠都能检测到正确剪接的 β-球蛋白 mRNA。与未编辑的β654小鼠相比,病理变化得到了改善。这使得携带β654等位基因的小鼠断奶后的存活率提高了两倍多。这种基因编辑策略的治疗效果表明,当 HDR 频率超过 20% 时,典型的 β-地中海贫血表型可以通过剂量依赖的方式得到改善。我们的研究为在β654小鼠模型中通过基因编辑反应性剪接受体位点来纠正剪接缺陷提供了一种独特而有效的方法。
{"title":"Gene Editing of the Endogenous Cryptic 3' Splice Site Corrects the RNA Splicing Defect in the β<sup>654</sup>-Thalassemia Mouse Model.","authors":"Dan Lu, Xiuli Gong, Xinbing Guo, Qin Cai, Yanwen Chen, Yiwen Zhu, Xiao Sang, Hua Yang, Miao Xu, Yitao Zeng, Dali Li, Fanyi Zeng","doi":"10.1089/hum.2023.202","DOIUrl":"10.1089/hum.2023.202","url":null,"abstract":"<p><p>β<sup>654</sup>-thalassemia is caused by a point mutation in the second intron (IVS-II) of the β-globin gene that activates a cryptic 3' splice site, leading to incorrect RNA splicing. Our previous study demonstrated that when direct deletion of the β<sup>654</sup> mutation sequence or the cryptic 3' splice site in the IVS-II occurs, correct splicing of β-globin mRNA can be restored. Herein, we conducted an in-depth analysis to explore a more precise gene-editing method for treating β<sup>654</sup>-thalassemia. A single-base substitution of the cryptic 3' acceptor splice site was introduced in the genome of a β<sup>654</sup>-thalassemia mouse model using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9(Cas9)-mediated homology-directed repair (HDR). All of the HDR-edited mice allow the detection of correctly spliced β-globin mRNA. Pathological changes were improved compared with the nonedited β<sup>654</sup> mice. This resulted in a more than twofold increase in the survival rate beyond the weaning age of the mice carrying the β<sup>654</sup> allele. The therapeutic effects of this gene-editing strategy showed that the typical β-thalassemia phenotype can be improved in a dose-dependent manner when the frequency of HDR is over 20%. Our research provides a unique and effective method for correcting the splicing defect by gene editing the reactive splicing acceptor site in a β<sup>654</sup> mouse model.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of AAV9 Galactose Binding Yields Novel Gene Therapy Vectors and Predicts Cross-Species Differences in Glycan Avidity. 调节 AAV9 的半乳糖结合可产生新的基因治疗载体,并可预测糖酶活性的跨物种差异。
IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-13 DOI: 10.1089/hum.2024.050
Jacob A Hoffman, Nathan Denton, Joshua J Sims, Rosemary Meggersee, Zhe Zhang, Kanyin Olagbegi, James M Wilson

Effective use of adeno-associated viruses (AAVs) for clinical gene therapy is limited by their propensity to accumulate in and transduce the liver. This natural liver tropism is associated with severe adverse events at the high doses that can be necessary for achieving therapeutic transgene expression in extrahepatic tissues. To improve the safety and cost of AAV gene therapy, capsid engineering efforts are underway to redirect in vivo AAV biodistribution away from the liver toward disease-relevant peripheral organs such as the heart. Building on previous work, we generated a series of AAV libraries containing variations at three residues (Y446, N470, and W503) of the galactose-binding pocket of the AAV9 VP1 protein. Screening of this library in mice identified the XRH family of variants (Y446X, N470R, and W503H), the strongest of which, HRH, exhibited a 6-fold reduction in liver RNA expression and a 10-fold increase in cardiac RNA expression compared with wild-type AAV9 in the mouse. Screening of our library in a nonhuman primate (NHP) revealed reduced performance of AAV9 and two closely related vectors in the NHP liver compared with the mouse liver. Measurement of the galactose-binding capacity of our library further identified those same three vectors as the only strong galactose binders, suggesting an altered galactose presentation between the mouse and NHP liver. N-glycan profiling of these tissues revealed a 9% decrease in exposed galactose in the NHP liver compared with the mouse liver. In this work, we identified a novel family of AAV variants with desirable biodistribution properties that may be suitable for targeting extrahepatic tissues such as the heart. These data also provide important insights regarding species- and tissue-specific differences in glycan presentation that may have implications for the development and translation of AAV gene therapies.

由于腺相关病毒(AAV)容易在肝脏中蓄积并转导肝脏,因此限制了其在临床基因治疗中的有效使用。在肝外组织中实现治疗性转基因表达所需的高剂量下,这种天然的肝脏趋向性与严重的不良反应有关。为了提高 AAV 基因治疗的安全性并降低成本,我们正在进行囊壳工程研究,以改变 AAV 在体内的生物分布,使其从肝脏转向心脏等与疾病相关的外周器官。在先前工作的基础上,我们生成了一系列 AAV 文库,其中包含 AAV9 VP1 蛋白半乳糖结合袋三个残基(Y446、N470 和 W503)的变异。在小鼠体内筛选该文库发现了 XRH 系列变体(Y446X、N470R 和 W503H),其中最强的变体 HRH 与小鼠体内的野生型 AAV9 相比,肝脏 RNA 表达量减少了六倍,心脏 RNA 表达量增加了十倍。在非人灵长类动物(NHP)中对我们的文库进行筛选后发现,与小鼠肝脏相比,AAV9 和两种密切相关的载体在 NHP 肝脏中的表现有所下降。对我们文库的半乳糖结合能力的测定进一步确定了这三种载体是唯一的强半乳糖结合体,这表明小鼠和非人灵长类肝脏中的半乳糖表达发生了改变。这些组织的 N-糖谱分析显示,与小鼠肝脏相比,NHP 肝脏中暴露的半乳糖减少了 9%。在这项工作中,我们发现了一系列新型 AAV 变体,它们具有理想的生物分布特性,可能适合靶向心脏等肝外组织。这些数据还提供了关于物种和组织特异性糖表达差异的重要见解,可能会对 AAV 基因疗法的开发和转化产生影响。
{"title":"Modulation of AAV9 Galactose Binding Yields Novel Gene Therapy Vectors and Predicts Cross-Species Differences in Glycan Avidity.","authors":"Jacob A Hoffman, Nathan Denton, Joshua J Sims, Rosemary Meggersee, Zhe Zhang, Kanyin Olagbegi, James M Wilson","doi":"10.1089/hum.2024.050","DOIUrl":"10.1089/hum.2024.050","url":null,"abstract":"<p><p>Effective use of adeno-associated viruses (AAVs) for clinical gene therapy is limited by their propensity to accumulate in and transduce the liver. This natural liver tropism is associated with severe adverse events at the high doses that can be necessary for achieving therapeutic transgene expression in extrahepatic tissues. To improve the safety and cost of AAV gene therapy, capsid engineering efforts are underway to redirect <i>in vivo</i> AAV biodistribution away from the liver toward disease-relevant peripheral organs such as the heart. Building on previous work, we generated a series of AAV libraries containing variations at three residues (Y446, N470, and W503) of the galactose-binding pocket of the AAV9 VP1 protein. Screening of this library in mice identified the XRH family of variants (Y446X, N470R, and W503H), the strongest of which, HRH, exhibited a 6-fold reduction in liver RNA expression and a 10-fold increase in cardiac RNA expression compared with wild-type AAV9 in the mouse. Screening of our library in a nonhuman primate (NHP) revealed reduced performance of AAV9 and two closely related vectors in the NHP liver compared with the mouse liver. Measurement of the galactose-binding capacity of our library further identified those same three vectors as the only strong galactose binders, suggesting an altered galactose presentation between the mouse and NHP liver. N-glycan profiling of these tissues revealed a 9% decrease in exposed galactose in the NHP liver compared with the mouse liver. In this work, we identified a novel family of AAV variants with desirable biodistribution properties that may be suitable for targeting extrahepatic tissues such as the heart. These data also provide important insights regarding species- and tissue-specific differences in glycan presentation that may have implications for the development and translation of AAV gene therapies.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Human gene therapy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1