RING/U-box E3 protein BIR1 interacts with and ubiquitinates barley growth repressor BROAD LEAF1.

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2024-09-02 DOI:10.1093/plphys/kiae315
Ouad Soltani, Moritz Jöst, Iris Hoffie, Götz Hensel, Christian Kappel, Gali Prag, Sarah McKim, Jochen Kumlehn, Michael Lenhard
{"title":"RING/U-box E3 protein BIR1 interacts with and ubiquitinates barley growth repressor BROAD LEAF1.","authors":"Ouad Soltani, Moritz Jöst, Iris Hoffie, Götz Hensel, Christian Kappel, Gali Prag, Sarah McKim, Jochen Kumlehn, Michael Lenhard","doi":"10.1093/plphys/kiae315","DOIUrl":null,"url":null,"abstract":"<p><p>Establishment of final leaf size in plants relies on the precise regulation of 2 interconnected processes, cell division and cell expansion. The barley (Hordeum vulgare) protein BROAD LEAF1 (BLF1) limits cell proliferation and leaf growth in the width direction. However, how the levels of this potent repressor of leaf growth are controlled remains unclear. Here, we used a yeast 2-hybrid screen to identify the BLF1-INTERACTING RING/U-BOX 1 (BIR1) E3 ubiquitin ligase that interacts with BLF1 and confirmed the interaction of the 2 proteins in planta. Inhibiting the proteasome caused overaccumulation of a BLF1-eGFP fusion protein when co-expressed with BIR1, and an in vivo ubiquitination assay in bacteria confirmed that BIR1 can mediate ubiquitination of BLF1 protein. Consistent with regulation of endogenous BLF1 in barley by proteasomal degradation, inhibition of the proteasome in BLF1-vYFP-expressing barley plants caused an accumulation of the BLF1 protein. The BIR1 protein co-localized with BLF1 in nuclei and appeared to reduce BLF1 protein levels. Analysis of bir1-1 knockout mutants suggested the involvement of BIR1 in leaf growth control, although mainly on leaf length. Together, our results suggest that proteasomal degradation, in part mediated by BIR1, helps fine-tune BLF1 protein levels in barley.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae315","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Establishment of final leaf size in plants relies on the precise regulation of 2 interconnected processes, cell division and cell expansion. The barley (Hordeum vulgare) protein BROAD LEAF1 (BLF1) limits cell proliferation and leaf growth in the width direction. However, how the levels of this potent repressor of leaf growth are controlled remains unclear. Here, we used a yeast 2-hybrid screen to identify the BLF1-INTERACTING RING/U-BOX 1 (BIR1) E3 ubiquitin ligase that interacts with BLF1 and confirmed the interaction of the 2 proteins in planta. Inhibiting the proteasome caused overaccumulation of a BLF1-eGFP fusion protein when co-expressed with BIR1, and an in vivo ubiquitination assay in bacteria confirmed that BIR1 can mediate ubiquitination of BLF1 protein. Consistent with regulation of endogenous BLF1 in barley by proteasomal degradation, inhibition of the proteasome in BLF1-vYFP-expressing barley plants caused an accumulation of the BLF1 protein. The BIR1 protein co-localized with BLF1 in nuclei and appeared to reduce BLF1 protein levels. Analysis of bir1-1 knockout mutants suggested the involvement of BIR1 in leaf growth control, although mainly on leaf length. Together, our results suggest that proteasomal degradation, in part mediated by BIR1, helps fine-tune BLF1 protein levels in barley.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RING/U-box E3 蛋白 BIR1 与大麦生长抑制因子 BROAD LEAF1 相互作用并泛素化。
植物最终叶片大小的确定取决于对细胞分裂和细胞扩张这两个相互关联过程的精确调控。大麦(Hordeum vulgare)蛋白质 BROAD LEAF1(BLF1)限制了细胞增殖和叶片在宽度方向上的生长。然而,这种叶片生长的强效抑制因子的水平是如何控制的仍不清楚。在这里,我们利用酵母双杂交筛选确定了与 BLF1 相互作用的 BLF1-INTERACTING RING/U-BOX 1 (BIR1) E3 泛素连接酶,并在植物体内证实了这两种蛋白的相互作用。抑制蛋白酶体会导致与 BIR1 共同表达的 BLF1-eGFP 融合蛋白过度积累,细菌体内泛素化试验证实 BIR1 能介导 BLF1 蛋白的泛素化。与大麦中内源 BLF1 受蛋白酶体降解的调控相一致,在表达 BLF1-vYFP 的大麦植株中抑制蛋白酶体会导致 BLF1 蛋白的积累。BIR1 蛋白与 BLF1 共同定位在细胞核中,似乎能降低 BLF1 蛋白水平。对bir1-1基因敲除突变体的分析表明,BIR1参与了叶片生长控制,但主要是叶片长度的控制。总之,我们的研究结果表明,蛋白酶体降解(部分由 BIR1 介导)有助于微调大麦中 BLF1 蛋白的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
Developmental responses of roots to limited phosphate availability: research progress and application in cereals Phosphorylation of the transcription factor SlBIML1 by SlBIN2 kinases delays flowering in tomato The transcriptional integration of environmental cues with root cell type development Lysine acetylation regulates the subcellular localization and function of WRKY63. Spatial sugar separation is key to how fast you get old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1