Expression and characterization of a thermostable monoacylglycerol lipase from thermophilic Geobacillus kaustophilus.

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-06-04 DOI:10.1080/10826068.2024.2361147
Noriyuki Doukyu, Hayato Ito, Kugako Sugimoto
{"title":"Expression and characterization of a thermostable monoacylglycerol lipase from thermophilic <i>Geobacillus kaustophilus</i>.","authors":"Noriyuki Doukyu, Hayato Ito, Kugako Sugimoto","doi":"10.1080/10826068.2024.2361147","DOIUrl":null,"url":null,"abstract":"<p><p>Thermophilic <i>Geobacillus kaustophilus</i> HTA426 genome possesses a monoacylglycerol lipase (MAGL) gene. MAGLs can synthesize emulsifiers for use in the food and pharmaceutical industries from fatty acids and glycerol. They can also be used to analyze monoacylglycerol (MAG) levels in serum and food. The MAGL gene from strain HTA426 was artificially synthesized and heterologously expressed in <i>Escherichia coli</i> BL21(DE3). The recombinant His-tag fused MAGL (GkMAGL) was purified using a Ni<sup>2+</sup>-affinity column. The purified enzyme showed a temperature optimum at 65 °C and was stable up to 75 °C after 30 min incubation. In addition, the enzyme exhibited a pH optimum of 7.5 and was stable from pH 5.0 to 11.0. The enzyme hydrolyzed monoacylglycerols and showed the highest activity toward 1-monolauroylglycerol. The enzyme was stable in the presence of various organic solvents and detergents. The addition of Triton X-100 significantly increased GkMAGL activity. The thermal stability of the enzyme was higher than that of thermostable MAGL from <i>Geobacillus</i> sp. 12AMOR1 (12AMOR1_MAGL). Circular dichroism spectral analysis showed that the conformational stability of the GkMAGL was higher than that of 12AMOR1_MAGL at higher temperatures. These results indicate that the GkMAGL has useful features that can be used for various biotechnological applications.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"58-66"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2361147","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Thermophilic Geobacillus kaustophilus HTA426 genome possesses a monoacylglycerol lipase (MAGL) gene. MAGLs can synthesize emulsifiers for use in the food and pharmaceutical industries from fatty acids and glycerol. They can also be used to analyze monoacylglycerol (MAG) levels in serum and food. The MAGL gene from strain HTA426 was artificially synthesized and heterologously expressed in Escherichia coli BL21(DE3). The recombinant His-tag fused MAGL (GkMAGL) was purified using a Ni2+-affinity column. The purified enzyme showed a temperature optimum at 65 °C and was stable up to 75 °C after 30 min incubation. In addition, the enzyme exhibited a pH optimum of 7.5 and was stable from pH 5.0 to 11.0. The enzyme hydrolyzed monoacylglycerols and showed the highest activity toward 1-monolauroylglycerol. The enzyme was stable in the presence of various organic solvents and detergents. The addition of Triton X-100 significantly increased GkMAGL activity. The thermal stability of the enzyme was higher than that of thermostable MAGL from Geobacillus sp. 12AMOR1 (12AMOR1_MAGL). Circular dichroism spectral analysis showed that the conformational stability of the GkMAGL was higher than that of 12AMOR1_MAGL at higher temperatures. These results indicate that the GkMAGL has useful features that can be used for various biotechnological applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嗜热革兰霉菌(Geobacillus kaustophilus)中一种恒温单酰基甘油脂肪酶的表达和特征。
嗜热革兰霉菌(Geobacillus kaustophilus)HTA426基因组具有单酰基甘油脂肪酶(MAGL)基因。MAGL 可以利用脂肪酸和甘油合成食品和制药业使用的乳化剂。它们还可用于分析血清和食品中的单酰甘油(MAG)含量。来自菌株 HTA426 的 MAGL 基因被人工合成并异源表达于大肠杆菌 BL21(DE3)。重组的 His-tag 融合 MAGL(GkMAGL)使用 Ni2+ 亲和柱纯化。纯化后的酶在 65 ℃ 时表现出最佳温度,孵育 30 分钟后,在 75 ℃ 时仍保持稳定。此外,该酶的最适 pH 值为 7.5,并在 pH 值为 5.0 至 11.0 的范围内保持稳定。该酶水解单酰基甘油,对 1-单月桂酰甘油的活性最高。该酶在各种有机溶剂和洗涤剂中都很稳定。添加 Triton X-100 能明显提高 GkMAGL 的活性。该酶的热稳定性高于 Geobacillus sp.圆二色光谱分析表明,在较高温度下,GkMAGL 的构象稳定性高于 12AMOR1_MAGL。这些结果表明,GkMAGL 具有可用于各种生物技术应用的有用特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
期刊最新文献
Cellulase from Halomonas elongata for biofuel application: enzymatic characterization and inhibition tolerance investigation. Development of an attenuated glutamine synthetase (GS) selection system for the stable expression of tissue plasminogen activator in CHO-K1 cells. Pea whey wastewater as a medium additive for the production of docosahexaenoic acid (C22:6 n3). Synergistic utilization of glucose and xylose for the myo-inositol biosynthesis in recombinant Escherichia coli BL21. Addition of microbial consortium to the rice straw biomethanization: effect on specific methanogenic activity, kinetic and bacterial community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1