Unraveling the Interplay: Soil Biogeochemical Factors Shaping the Efficacy of Anaerobic Soil Disinfestation in Suppressing Fusarium Root Rot of Strawberry.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2024-08-01 Epub Date: 2024-08-10 DOI:10.1094/PHYTO-09-23-0323-R
James Littrell, Bonnie H Ownley, David M Butler
{"title":"Unraveling the Interplay: Soil Biogeochemical Factors Shaping the Efficacy of Anaerobic Soil Disinfestation in Suppressing Fusarium Root Rot of Strawberry.","authors":"James Littrell, Bonnie H Ownley, David M Butler","doi":"10.1094/PHYTO-09-23-0323-R","DOIUrl":null,"url":null,"abstract":"<p><p>Nontoxic alternatives to chemical soil fumigants for suppressing soilborne pathogens such as <i>Fusarium oxysporum</i> (<i>Fo</i>), one causative agent of strawberry black root rot complex prevalent in the Southeastern United States, are urgently needed. A promising alternative is anaerobic soil disinfestation, in which soil is amended with labile organic materials, irrigated to field capacity, and tarped to induce anaerobic fermentation for a brief period before planting. Pathogen-suppression mechanisms of anaerobic soil disinfestation include anaerobic conditions and generation of reduced metal cations (Fe<sup>2+</sup> and Mn<sup>2+</sup>) and volatile fatty acids (VFAs; e.g., acetic, <i>n</i>-butyric, isovaleric, and others). However, little is known about how the interaction between VFAs, reduced metals, soil texture, and liming influences suppression of <i>Fo</i>. We investigated <i>Fo</i> suppression by VFAs and reduced metal cations in both aqueous and soil-based incubation trials. Inoculum containing <i>Fo</i> chlamydospores was added to aqueous medium containing either 5 or 10 mmol/liter VFAs and either 0.01 or 0.05% (wt/wt) reduced metals. In soil-based incubations, chlamydospore-containing inoculum was applied to sandy, sandy loam, and silty clay soil saturated by solutions containing 10 or 20 mmol/liter VFAs with or without 0.05% (wt/wt) reduced metals. VFAs, particularly in combination with Fe<sup>2+</sup> in aqueous solutions and Mn<sup>2+</sup> in soils, significantly reduced <i>Fo</i> viability. At the same time, liming and higher soil clay content reduced the effectiveness of VFAs and reduced metals for suppressing <i>Fo</i>, highlighting the influence of soil pH and soil texture on anaerobic soil disinfestation effectiveness.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"1782-1790"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-09-23-0323-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nontoxic alternatives to chemical soil fumigants for suppressing soilborne pathogens such as Fusarium oxysporum (Fo), one causative agent of strawberry black root rot complex prevalent in the Southeastern United States, are urgently needed. A promising alternative is anaerobic soil disinfestation, in which soil is amended with labile organic materials, irrigated to field capacity, and tarped to induce anaerobic fermentation for a brief period before planting. Pathogen-suppression mechanisms of anaerobic soil disinfestation include anaerobic conditions and generation of reduced metal cations (Fe2+ and Mn2+) and volatile fatty acids (VFAs; e.g., acetic, n-butyric, isovaleric, and others). However, little is known about how the interaction between VFAs, reduced metals, soil texture, and liming influences suppression of Fo. We investigated Fo suppression by VFAs and reduced metal cations in both aqueous and soil-based incubation trials. Inoculum containing Fo chlamydospores was added to aqueous medium containing either 5 or 10 mmol/liter VFAs and either 0.01 or 0.05% (wt/wt) reduced metals. In soil-based incubations, chlamydospore-containing inoculum was applied to sandy, sandy loam, and silty clay soil saturated by solutions containing 10 or 20 mmol/liter VFAs with or without 0.05% (wt/wt) reduced metals. VFAs, particularly in combination with Fe2+ in aqueous solutions and Mn2+ in soils, significantly reduced Fo viability. At the same time, liming and higher soil clay content reduced the effectiveness of VFAs and reduced metals for suppressing Fo, highlighting the influence of soil pH and soil texture on anaerobic soil disinfestation effectiveness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示相互作用:土壤生物地球化学因素影响厌氧土壤消毒法抑制草莓镰刀菌根腐病的效果
目前迫切需要一种无毒的土壤熏蒸剂替代品来抑制土壤中的病原体,如草孢镰刀菌(Fo),它是美国东南部盛行的草莓黑根腐病的致病菌之一。一种很有前景的替代方法是厌氧土壤消毒(ASD),即在土壤中添加易腐有机物,灌溉至田间容量,并在种植前用防水布短暂诱导厌氧发酵。厌氧发酵的病原体抑制机制包括厌氧条件以及生成还原金属阳离子(Fe2+ 和 Mn2+)和挥发性脂肪酸(VFAs,如乙酸、正丁酸、异戊酸等)。然而,人们对挥发性脂肪酸、还原金属、土壤质地和石灰之间的相互作用如何影响酚的抑制作用知之甚少。我们在水基和土基培养试验中研究了 VFAs 和还原金属阳离子对 Fo 的抑制作用。在含有 5 或 10 毫摩尔/升 VFA 和 0.01% 或 0.05%(重量比)还原金属的水培养基中加入含有萤火虫衣藻孢子的接种体。在以土壤为基础的培养中,将含衣藻孢子的接种体施用到砂质、砂质壤土和淤泥质粘土中,这些土壤都被含有 10 或 20 毫摩尔/升 VFAs 的溶液所饱和,溶液中含有或不含有 0.05%(重量比)还原金属。VFAs,尤其是与水溶液中的 Fe2+ 和土壤中的 Mn2+ 结合使用时,能显著降低蛙的活力。同时,施用石灰和土壤粘土含量较高会降低 VFAs 和还原金属抑制萤火虫的效果,这凸显了土壤 pH 值和土壤质地对 ASD 效果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
Validation of PCR Diagnostic Assays for Detection and Identification of All Ralstonia solanacearum Sequevars Causing Moko Disease in Banana. Building Accelerated Plant Breeding Pipelines: Screening to Evaluate Lima Bean Resistance to Root-Knot Nematode in Diverse Inbred Lines and Segregating Breeding Populations. First Reported Sexual Recombination Between Pyrenophora teres Isolates from Barley and Barley Grass. Mapping Seedling and Adult Plant Leaf Rust Resistance Genes in the Durum Wheat Cultivar Strongfield and Other Triticum turgidum Lines. An Engineered Citrus Tristeza Virus (T36CA)-Based Vector Induces Gene-Specific RNA Silencing and Is Graft Transmissible to Commercial Citrus Varieties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1