首页 > 最新文献

Phytopathology最新文献

英文 中文
Biphenyl and dibenzofuran phytoalexins differentially inhibit root-associated microbiota in apple, including fungal and oomycetal replant disease pathogens. 联苯和二苯并呋喃类植物毒素对苹果根部相关微生物群(包括真菌和卵菌再植病病原体)的抑制作用不同。
IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-21 DOI: 10.1094/PHYTO-03-24-0088-R
Belnaser A Busnena, Ludger Beerhues, Benye Liu

Apple replant disease (ARD) is a serious soilborne disease in apple nurseries and orchards worldwide. ARD is the result of an unbalanced soil microbiome in which multiple soil-borne plant pathogenic fungi, oomycetes and nematodes form a disease complex. Biphenyl and dibenzofuran phytoalexins are found in greater quantities in the roots of apple plants grown in ARD soil compared to disinfected ARD soil. However, the contribution of these compounds to plant health or disease is not yet understood. Here, the antimicrobial activity of fourteen chemically synthesized biphenyl and dibenzofuran phytoalexins was tested against eight selected microorganisms isolated from either rhizosphere soils or apple roots. These included five potentially beneficial bacteria (Rhodococcus pseudokoreensis strain R79T, Rhodococcus koreensis strain R85, Streptomyces pulveraceus strain ES16, Streptomyces ciscaucasicus GS2, Priestia megaterium strain B1), two ARD fungal pathogens (Ilyonectria robusta H131 and Dactylonectria torresensis N3) and one oomycete (Globisporangium terrestre). Two phytoalexin mixtures reflecting the percentages of the individual compounds inside the roots (Mixture A) and the root exudate (Mixture B) were also tested. The two phytoalexin mixtures demonstrated a higher antimicrobial activity than the individual phytoalexins, suggesting a synergistic effect. The minimum inhibitory concentration (MIC) and the half maximal effective concentration (EC50) values determined to be active against the eight microbes were within a range of 2.5-fold the ecologically relevant phytoalexin concentration (approximately 33 and 24 µg ml-1 in roots and exudates, respectively). The results contribute to our understanding of the impact of apple root phytoalexins on ARD and suggest potential strategies for disease management.

{"title":"Biphenyl and dibenzofuran phytoalexins differentially inhibit root-associated microbiota in apple, including fungal and oomycetal replant disease pathogens.","authors":"Belnaser A Busnena, Ludger Beerhues, Benye Liu","doi":"10.1094/PHYTO-03-24-0088-R","DOIUrl":"https://doi.org/10.1094/PHYTO-03-24-0088-R","url":null,"abstract":"<p><p>Apple replant disease (ARD) is a serious soilborne disease in apple nurseries and orchards worldwide. ARD is the result of an unbalanced soil microbiome in which multiple soil-borne plant pathogenic fungi, oomycetes and nematodes form a disease complex. Biphenyl and dibenzofuran phytoalexins are found in greater quantities in the roots of apple plants grown in ARD soil compared to disinfected ARD soil. However, the contribution of these compounds to plant health or disease is not yet understood. Here, the antimicrobial activity of fourteen chemically synthesized biphenyl and dibenzofuran phytoalexins was tested against eight selected microorganisms isolated from either rhizosphere soils or apple roots. These included five potentially beneficial bacteria (<i>Rhodococcus pseudokoreensis</i> strain R79<sup>T</sup>, <i>Rhodococcus koreensis</i> strain R85, <i>Streptomyces pulveraceus</i> strain ES16, <i>Streptomyces ciscaucasicus</i> GS2, <i>Priestia megaterium</i> strain B1), two ARD fungal pathogens (<i>Ilyonectria robusta</i> H131 and <i>Dactylonectria torresensis</i> N3) and one oomycete (<i>Globisporangium terrestre</i>). Two phytoalexin mixtures reflecting the percentages of the individual compounds inside the roots (Mixture A) and the root exudate (Mixture B) were also tested. The two phytoalexin mixtures demonstrated a higher antimicrobial activity than the individual phytoalexins, suggesting a synergistic effect. The minimum inhibitory concentration (MIC) and the half maximal effective concentration (EC<sub>50</sub>) values determined to be active against the eight microbes were within a range of 2.5-fold the ecologically relevant phytoalexin concentration (approximately 33 and 24 µg ml<sup>-1</sup> in roots and exudates, respectively). The results contribute to our understanding of the impact of apple root phytoalexins on ARD and suggest potential strategies for disease management.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loop-mediated isothermal amplification detection of Phytophthora kernoviae, Phytophthora ramorum, and the P. ramorum NA1 lineage on a microfluidic chip and smartphone platform. 在微流控芯片和智能手机平台上进行环介导等温扩增检测噬菌体(Phytophthora kernoviae)、根瘤蚜(Phytophthora ramorum)和根瘤蚜 NA1 系。
IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-21 DOI: 10.1094/PHYTO-02-24-0055-R
Amanda Mainello-Land, Amanda C Saville, Jyotsna Acharya, Jean Ristaino

Rapid, field-deployable assays such as loop-mediated isothermal amplification (LAMP) are critical for detecting nursery and forest pathogens like Phytophthora ramorum and P. kernoviae to prevent pathogen spread. We developed and validated four LAMP assays for genus-level detection of Phytophthora spp., species-level detection of P. kernoviae and P. ramorum and lineage-level detection of the P. ramorum NA1 lineage. Cross reactivity of the two species-specific LAMP assays was evaluated using a set of 18 Phytophthora spp. known to infect nursery crop hosts. The correct target species were detected by the species-level LAMP assays. The Phytophthora spp. LAMP assay was evaluated against 27 Phytophthora spp. and other bacterial and fungal pathogens and reacted with all the Phytophthora spp. evaluated but no other bacterial or fungal species. The limit of detection (LOD) of the P. kernoviae LAMP was 100 fg/µl and the LOD of the P. ramorum LAMP assay was 1 pg/µl of DNA. The NA1 LAMP assay was tested against the NA1, NA2, EU1, and EU2 lineages of P. ramorum and was lineage-specific but had a higher LOD (100pg/µl) than the species-specific LAMP assays. Both P. ramorum and P. kernoviae LAMP assays were highly precise (>0.94) in detecting the respective pathogens in symptomatic rhododendron leaves and co-inoculation experiments. The set of four LAMP assays were run in tandem on a microfluidic chip and smartphone platform and can be used in the field to detect and monitor spread of these regulatory Phytophthora spp. in forest and/or nursery settings.

环介导等温扩增(LAMP)等可在田间部署的快速检测方法对于检测苗圃和森林病原体(如绵羊疫霉和克诺维亚疫霉)以防止病原体传播至关重要。我们开发并验证了四种 LAMP 检测方法,分别用于属级的疫霉菌属检测、种级的克诺维亚疫霉菌和绵羊疫霉菌检测以及绵羊疫霉菌 NA1 系的系级检测。使用一组已知会感染苗圃作物宿主的 18 种嗜夜蛾属植物,对两种物种特异性 LAMP 检测的交叉反应性进行了评估。物种水平的 LAMP 检测方法检测出了正确的目标物种。针对 27 种 Phytophthora 菌属及其他细菌和真菌病原体对 Phytophthora spp.P. kernoviae LAMP 的检测限为 100 fg/µl,P. ramorum LAMP 检测的检测限为 1 pg/µl DNA。NA1 LAMP 检测法针对 P. ramorum 的 NA1、NA2、EU1 和 EU2 株系进行了测试,具有株系特异性,但其 LOD(100pg/µl)高于物种特异性 LAMP 检测法。P. ramorum 和 P. kernoviae LAMP 检测法在有症状的杜鹃花叶片和共同接种实验中检测各自病原体的精确度都很高(>0.94)。这套四种 LAMP 检测方法是在微流控芯片和智能手机平台上串联运行的,可用于实地检测和监测森林和/或苗圃中这些调控型疫霉属的传播情况。
{"title":"Loop-mediated isothermal amplification detection of <i>Phytophthora kernoviae</i>, <i>Phytophthora ramorum</i>, and the <i>P. ramorum</i> NA1 lineage on a microfluidic chip and smartphone platform.","authors":"Amanda Mainello-Land, Amanda C Saville, Jyotsna Acharya, Jean Ristaino","doi":"10.1094/PHYTO-02-24-0055-R","DOIUrl":"https://doi.org/10.1094/PHYTO-02-24-0055-R","url":null,"abstract":"<p><p>Rapid, field-deployable assays such as loop-mediated isothermal amplification (LAMP) are critical for detecting nursery and forest pathogens like <i>Phytophthora ramorum</i> and <i>P. kernoviae</i> to prevent pathogen spread. We developed and validated four LAMP assays for genus-level detection of <i>Phytophthora</i> spp., species-level detection of <i>P. kernoviae</i> and <i>P. ramorum</i> and lineage-level detection of the <i>P. ramorum</i> NA1 lineage. Cross reactivity of the two species-specific LAMP assays was evaluated using a set of 18 <i>Phytophthora</i> spp. known to infect nursery crop hosts. The correct target species were detected by the species-level LAMP assays. The <i>Phytophthora</i> spp. LAMP assay was evaluated against 27 <i>Phytophthora</i> spp. and other bacterial and fungal pathogens and reacted with all the <i>Phytophthora</i> spp. evaluated but no other bacterial or fungal species. The limit of detection (LOD) of the <i>P. kernoviae</i> LAMP was 100 fg/µl and the LOD of the <i>P. ramorum</i> LAMP assay was 1 pg/µl of DNA. The NA1 LAMP assay was tested against the NA1, NA2, EU1, and EU2 lineages of <i>P. ramorum</i> and was lineage-specific but had a higher LOD (100pg/µl) than the species-specific LAMP assays. Both <i>P. ramorum</i> and <i>P. kernoviae</i> LAMP assays were highly precise (>0.94) in detecting the respective pathogens in symptomatic rhododendron leaves and co-inoculation experiments. The set of four LAMP assays were run in tandem on a microfluidic chip and smartphone platform and can be used in the field to detect and monitor spread of these regulatory <i>Phytophthora</i> spp. in forest and/or nursery settings.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness and Genetic Control of Trichoderma spp. as a Biological Control of Wheat Powdery Mildew Disease. 毛霉菌作为小麦白粉病生物防治的有效性和遗传控制。
IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-16 DOI: 10.1094/PHYTO-05-24-0157-R
Amira M I Mourad, Andreas Börner, Samar M Esmail

Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been made to control such a serious disease. An effective way to control WPM is urgently needed. Biological control is an effective way to control plant diseases worldwide. In this study, the efficiency of three different Trichoderma spp. in controlling WPM at the seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments, confirming the efficiency of Trichoderma in controlling WPM. Of the three species, T. asperellum T34 (T34) was the most effective species in controlling WPM, as it reduced the symptoms by 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM resistance induced by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm, suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirms the efficiency of T34 in controlling WPM and provides a deep understanding of the genetic control of induced and normal resistance to WPM.

小麦白粉病(WPM)是影响全球小麦产量的最严重病害之一。对于如此严重的病害,人们几乎没有采取任何防治措施。寻找一种有效的方法来控制小麦白粉病迫在眉睫。生物防治是世界范围内控制植物病害的有效方法。在这项研究中,使用 35 种高度多样化的小麦基因型测试了三种不同的毛霉菌属在幼苗生长阶段控制 WPM 的效率。结果发现,四种处理之间对 WPM 的抗性差异很大,这证实了毛霉菌在控制 WPM 方面的功效。在三个菌种中,T34(Trichoderma asperellum T34)是对 WPM 控制最有效的菌种,因为它减少了 50.56% 的症状。一组 196 个小麦基因型被用来鉴定 T34 对 WPM 诱导抗性的遗传控制。结果发现,在 Pm、T34 和 T34(T34_improvement)条件下,分别有 39、27 和 18 个基因模型含有显著标记。此外,在 T34 和 Pm 条件下没有共同的基因模型,这表明在 T34 和 Pm 条件下存在完全不同的基因系统控制抗性。检测到的基因模型的功能注释和生物过程路径证实了它们与正常抗性和诱导抗性的关联。该研究首次证实了 T34 在控制 WPM 方面的效率,并为深入了解 WPM 诱导抗性和正常抗性的遗传调控提供了依据。
{"title":"Effectiveness and Genetic Control of <i>Trichoderma</i> spp. as a Biological Control of Wheat Powdery Mildew Disease.","authors":"Amira M I Mourad, Andreas Börner, Samar M Esmail","doi":"10.1094/PHYTO-05-24-0157-R","DOIUrl":"10.1094/PHYTO-05-24-0157-R","url":null,"abstract":"<p><p>Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been made to control such a serious disease. An effective way to control WPM is urgently needed. Biological control is an effective way to control plant diseases worldwide. In this study, the efficiency of three different <i>Trichoderma</i> spp. in controlling WPM at the seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments, confirming the efficiency of <i>Trichoderma</i> in controlling WPM. Of the three species, <i>T. asperellum</i> T34 (T34) was the most effective species in controlling WPM, as it reduced the symptoms by 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM resistance induced by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm, suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirms the efficiency of T34 in controlling WPM and provides a deep understanding of the genetic control of induced and normal resistance to WPM.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host-Driven Selection, Revealed by Comparative Analysis of Xanthomonas Type III Secretion Effectoromes, Unveils Novel Recognized Effectors. 通过比较分析黄单胞菌 III 型分泌效应器基因组发现的宿主驱动选择揭示了新型识别效应器。
IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-16 DOI: 10.1094/PHYTO-04-24-0147-R
Yao Xiao, Shatrupa Ray, Saul Burdman, Doron Teper

Xanthomonas species are specialized plant pathogens, often exhibiting a narrow host range. They rely on the translocation of effector proteins through the type III secretion system to colonize their respective hosts. The effector arsenal varies among Xanthomonas spp., typically displaying species-specific compositions. This species-specific effector composition, collectively termed the effectorome, is thought to influence host specialization. We determined the plant host-derived effectoromes of more than 300 deposited genomes of Xanthomonas species associated with either Solanaceae or Brassicaceae hosts. Comparative analyses revealed clear species-specific effectorome signatures. However, Solanaceae or Brassicaceae host-associated effectorome signatures were not detected. Nevertheless, host biases in the presence or absence of specific effector classes were observed. To assess whether host-associated effector absence results from selective pressures, we introduced effectors unique to Solanaceae pathogens to X. campestris pv. campestris and effectors unique to Brassicaceae pathogens to X. euvesicatoria pv. euvesicatoria (Xeue) and evaluated if these introductions hindered virulence on their respective hosts. Introducing the effector XopI into X. campestris pv. campestris reduced virulence on white cabbage leaves without affecting localized or systemic colonization. Introducing the XopAC or XopJ5 effectors into Xeue reduced virulence and colonization on tomato but not on pepper. Additionally, XopAC and XopJ5 induced a hypersensitive response on tomato leaves when delivered by Xeue or through Agrobacterium-mediated transient expression, confirming recognition in tomato. This study demonstrates the role of host-derived selection in establishing species-specific effectoromes, identifying XopAC and XopJ5 as recognized effectors in tomato.

黄单胞菌是专门的植物病原体,通常寄主范围很窄。它们依靠通过 III 型分泌系统转运效应蛋白来定植于各自的寄主。黄单胞菌属的效应蛋白库各不相同,通常具有物种特异性。这种物种特异性效应物组成统称为效应物组,被认为会影响宿主的特化。我们测定了 300 多个与茄科或十字花科寄主相关的黄单胞菌物种基因组的植物寄主衍生效应器组。比较分析发现了明显的物种特异性效应基因组特征。但是,没有发现茄科或十字花科寄主相关的效应基因组特征。不过,在存在或不存在特定效应物类别的情况下,也观察到了宿主的偏差。为了评估宿主相关效应物的缺失是否源于选择压力,我们向野油菜黄单胞菌(Xcc)引入了茄科病原体特有的效应物,向黄单胞菌(Xeue)引入了十字花科病原体特有的效应物,并评估了这些引入是否阻碍了它们在各自宿主上的毒力。在 Xcc 中引入效应子 XopI 会降低其在白甘蓝叶片上的毒力,但不会影响局部或系统定殖。将 XopAC 或 XopJ5 效应体引入 Xeue 会降低对番茄的毒力和定殖,但不会影响对辣椒的毒力和定殖。此外,XopAC 和 XopJ5 通过 Xeue 或农杆菌介导的瞬时表达在番茄叶片上诱导超敏反应,证实了在番茄上的识别能力。这项研究证明了宿主衍生选择在建立物种特异性效应子群中的作用,确定了 XopAC 和 XopJ5 是番茄中的识别效应子。
{"title":"Host-Driven Selection, Revealed by Comparative Analysis of <i>Xanthomonas</i> Type III Secretion Effectoromes, Unveils Novel Recognized Effectors.","authors":"Yao Xiao, Shatrupa Ray, Saul Burdman, Doron Teper","doi":"10.1094/PHYTO-04-24-0147-R","DOIUrl":"10.1094/PHYTO-04-24-0147-R","url":null,"abstract":"<p><p><i>Xanthomonas</i> species are specialized plant pathogens, often exhibiting a narrow host range. They rely on the translocation of effector proteins through the type III secretion system to colonize their respective hosts. The effector arsenal varies among <i>Xanthomonas</i> spp., typically displaying species-specific compositions. This species-specific effector composition, collectively termed the effectorome, is thought to influence host specialization. We determined the plant host-derived effectoromes of more than 300 deposited genomes of <i>Xanthomonas</i> species associated with either <i>Solanaceae</i> or <i>Brassicaceae</i> hosts. Comparative analyses revealed clear species-specific effectorome signatures. However, <i>Solanaceae</i> or <i>Brassicaceae</i> host-associated effectorome signatures were not detected. Nevertheless, host biases in the presence or absence of specific effector classes were observed. To assess whether host-associated effector absence results from selective pressures, we introduced effectors unique to <i>Solanaceae</i> pathogens to <i>X. campestris</i> pv. <i>campestris</i> and effectors unique to <i>Brassicaceae</i> pathogens to <i>X. euvesicatoria</i> pv. <i>euvesicatoria</i> (Xeue) and evaluated if these introductions hindered virulence on their respective hosts. Introducing the effector XopI into <i>X. campestris</i> pv. <i>campestris</i> reduced virulence on white cabbage leaves without affecting localized or systemic colonization. Introducing the XopAC or XopJ5 effectors into Xeue reduced virulence and colonization on tomato but not on pepper. Additionally, XopAC and XopJ5 induced a hypersensitive response on tomato leaves when delivered by Xeue or through <i>Agrobacterium</i>-mediated transient expression, confirming recognition in tomato. This study demonstrates the role of host-derived selection in establishing species-specific effectoromes, identifying XopAC and XopJ5 as recognized effectors in tomato.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What Explains Hop Growers' Fungicide Use Intensity and Management Costs in Response to Powdery Mildew? 酒花种植者在应对白粉病时使用杀菌剂的强度和管理成本的原因是什么?
IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-15 DOI: 10.1094/PHYTO-04-24-0127-R
Jae Young Hwang, Sharmodeep Bhattacharyya, Shirshendu Chatterjee, Thomas L Marsh, Joshua F Pedro, David H Gent

Methods for causal inference from observational data are common in human disease epidemiology and social sciences but are used relatively little in plant pathology. We draw upon an extensive data set of the incidence of hop plants with powdery mildew (caused by Podosphaera macularis) collected from yards in Oregon from 2014 to 2017 and associated metadata on grower cultural practices, cultivar susceptibility to powdery mildew, and pesticide application records to understand variation in and causes of growers' fungicide use and associated costs. An instrumental causal forest model identified growers' spring pruning thoroughness, cultivar susceptibility to two of the dominant pathogenic races of P. macularis, network centrality of yards during May-June and June-July time transitions, and the initial strain of the fungus detected as important variables determining the number of pesticide active constituents applied by growers and the associated costs they incurred in response to powdery mildew. Exposure-response function models fit after covariate weighting indicated that both the number of pesticide active constituents applied and their associated costs scaled linearly with the seasonal mean incidence of plants with powdery mildew. Although the causes of pesticide use intensity are multifaceted, biological and production factors collectively influence the incidence of powdery mildew, which has a direct exposure-response relationship with the number of pesticide active constituents that growers apply and their costs. Our analyses point to several potential strategies for reducing pesticide use and costs for management of powdery mildew on hop. We also highlight the utility of these methods for causal inference in observational studies.

从观察数据中进行因果推断的方法在人类疾病流行病学和社会科学中很常见,但在植物病理学中却相对较少使用。我们利用 2014 年至 2017 年期间从俄勒冈州堆场收集的酒花植物白粉病(Podosphaera macularis)发病率的大量数据集,以及种植者栽培实践、栽培品种对白粉病的易感性和杀虫剂施用记录等相关元数据,来了解种植者使用杀菌剂和相关成本的变化和原因。一个工具因果森林模型确定了种植者春季修剪的彻底性、栽培品种对白粉病两种主要致病品系的易感性、5-6月和6-7月时间转换期间一个庭院的网络中心性,以及真菌的初始菌株,这些都是决定种植者施用杀虫剂活性成分的数量和应对白粉病所产生的相关成本的重要变量。经过协变量加权后拟合的暴露-反应函数模型表明,施用农药活性成分的数量及其相关成本与白粉病植株的季节平均发病率成线性关系。虽然造成农药使用强度的原因是多方面的,但生物和生产因素共同影响着白粉病的发病率,而白粉病的发病率与种植者施用的农药活性成分数量及其成本有着直接的接触-反应关系。我们的分析指出了几种减少农药用量和酒花白粉病防治成本的潜在策略。我们还强调了这些方法在观察研究中进行因果推断的实用性。
{"title":"What Explains Hop Growers' Fungicide Use Intensity and Management Costs in Response to Powdery Mildew?","authors":"Jae Young Hwang, Sharmodeep Bhattacharyya, Shirshendu Chatterjee, Thomas L Marsh, Joshua F Pedro, David H Gent","doi":"10.1094/PHYTO-04-24-0127-R","DOIUrl":"10.1094/PHYTO-04-24-0127-R","url":null,"abstract":"<p><p>Methods for causal inference from observational data are common in human disease epidemiology and social sciences but are used relatively little in plant pathology. We draw upon an extensive data set of the incidence of hop plants with powdery mildew (caused by <i>Podosphaera macularis</i>) collected from yards in Oregon from 2014 to 2017 and associated metadata on grower cultural practices, cultivar susceptibility to powdery mildew, and pesticide application records to understand variation in and causes of growers' fungicide use and associated costs. An instrumental causal forest model identified growers' spring pruning thoroughness, cultivar susceptibility to two of the dominant pathogenic races of <i>P. macularis</i>, network centrality of yards during May-June and June-July time transitions, and the initial strain of the fungus detected as important variables determining the number of pesticide active constituents applied by growers and the associated costs they incurred in response to powdery mildew. Exposure-response function models fit after covariate weighting indicated that both the number of pesticide active constituents applied and their associated costs scaled linearly with the seasonal mean incidence of plants with powdery mildew. Although the causes of pesticide use intensity are multifaceted, biological and production factors collectively influence the incidence of powdery mildew, which has a direct exposure-response relationship with the number of pesticide active constituents that growers apply and their costs. Our analyses point to several potential strategies for reducing pesticide use and costs for management of powdery mildew on hop. We also highlight the utility of these methods for causal inference in observational studies.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining Single-Gene-Resistant and Pyramided Cultivars of Perennial Crops in Agricultural Landscapes Compromises Pyramiding Benefits in Most Production Situations. 在农业景观中将多年生作物的单基因抗性品种与金字塔型栽培品种结合起来,在大多数生产情况下都会损害金字塔型栽培的效益。
IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-15 DOI: 10.1094/PHYTO-02-24-0075-R
Marta Zaffaroni, Julien Papaïx, Abebayehu G Geffersa, Jean-François Rey, Loup Rimbaud, Frédéric Fabre

Although resistant cultivars are valuable in safeguarding crops against diseases, they can be rapidly overcome by pathogens. Numerous strategies have been proposed to delay pathogen adaptation (evolutionary control) while still ensuring effective protection (epidemiological control). For perennial crops, multiple resistance genes can be deployed (i) in the same cultivar (pyramiding strategy); in single-gene-resistant cultivars grown (ii) in the same field (mixture strategy) or (iii) in different fields (mosaic strategy); or (iv) in hybrid strategies that combine the three previous options. In addition, the spatial scale at which resistant cultivars are deployed can affect the plant-pathogen interaction: Small fields are thought to reduce pest density and disease transmission. Here, we used the spatially explicit stochastic model landsepi to compare the evolutionary and epidemiological control across spatial scales and deployment strategies relying on two major resistance genes. Our results, broadly focused on resistance to downy mildew of grapevine, show that the evolutionary control provided by the pyramiding strategy is at risk when single-gene-resistant cultivars are concurrently planted in the landscape (hybrid strategies), especially at low mutation probability. Moreover, the effectiveness of pyramiding compared with hybrid strategies is influenced by whether the adapted pathogen pays a fitness cost across all hosts or only for unnecessary virulence, particularly when the fitness cost is high rather than intermediate. Finally, field size did not affect model outputs for a wide range of mutation probabilities and associated fitness costs. The socioeconomic policies favoring the adoption of optimal resistant management strategies are discussed.

虽然抗病栽培品种在保护作物免受病害侵害方面很有价值,但它们也会被病原体迅速攻克。为了延缓病原体的适应(进化控制),同时确保有效的保护(流行病控制),人们提出了许多策略。对于多年生作物来说,多种抗性基因可以:1)在同一栽培品种中(金字塔策略);2)在同一田块中(混合策略)或 3)在不同田块中(镶嵌策略)种植的单基因抗性栽培品种;或 4)结合前三种方法的杂交策略。此外,种植抗病栽培品种的空间尺度也会影响植物与病原体之间的相互作用:人们认为小块田地可以降低害虫密度,减少病害传播。在这里,我们使用空间显式随机模型 landsepi,比较了不同空间尺度和部署策略下的进化和流行病学控制,这些策略依赖于两种主要的抗性基因。结果表明,当景观中同时种植单基因抗性栽培品种(杂交策略)时,尤其是在低突变概率情况下,金字塔策略提供的进化控制面临风险。此外,与杂交策略相比,金字塔策略的有效性还受到适应病原体是为所有宿主付出适应成本还是只为不必要的毒性付出适应成本的影响,尤其是当适应成本较高而不是中等时。最后,在变异概率和相关适应性成本范围较广的情况下,田块大小对模型输出结果没有影响。本文讨论了有利于采用最佳抗性管理策略的社会经济政策。
{"title":"Combining Single-Gene-Resistant and Pyramided Cultivars of Perennial Crops in Agricultural Landscapes Compromises Pyramiding Benefits in Most Production Situations.","authors":"Marta Zaffaroni, Julien Papaïx, Abebayehu G Geffersa, Jean-François Rey, Loup Rimbaud, Frédéric Fabre","doi":"10.1094/PHYTO-02-24-0075-R","DOIUrl":"10.1094/PHYTO-02-24-0075-R","url":null,"abstract":"<p><p>Although resistant cultivars are valuable in safeguarding crops against diseases, they can be rapidly overcome by pathogens. Numerous strategies have been proposed to delay pathogen adaptation (evolutionary control) while still ensuring effective protection (epidemiological control). For perennial crops, multiple resistance genes can be deployed (i) in the same cultivar (pyramiding strategy); in single-gene-resistant cultivars grown (ii) in the same field (mixture strategy) or (iii) in different fields (mosaic strategy); or (iv) in hybrid strategies that combine the three previous options. In addition, the spatial scale at which resistant cultivars are deployed can affect the plant-pathogen interaction: Small fields are thought to reduce pest density and disease transmission. Here, we used the spatially explicit stochastic model <i>landsepi</i> to compare the evolutionary and epidemiological control across spatial scales and deployment strategies relying on two major resistance genes. Our results, broadly focused on resistance to downy mildew of grapevine, show that the evolutionary control provided by the pyramiding strategy is at risk when single-gene-resistant cultivars are concurrently planted in the landscape (hybrid strategies), especially at low mutation probability. Moreover, the effectiveness of pyramiding compared with hybrid strategies is influenced by whether the adapted pathogen pays a fitness cost across all hosts or only for unnecessary virulence, particularly when the fitness cost is high rather than intermediate. Finally, field size did not affect model outputs for a wide range of mutation probabilities and associated fitness costs. The socioeconomic policies favoring the adoption of optimal resistant management strategies are discussed.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Different Light Conditions on Anatomical and Histological Features of Galls in Bacterial Gall Disease of Cerasus × yedoensis. 不同光照条件对 Cerasus × yedoensis 细菌性瘿病虫瘿解剖学和组织学特征的影响。
IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-14 DOI: 10.1094/PHYTO-06-22-0221-R
Takefumi Ikeda, Misaki Okuda, Makoto Ishihara, Yasuo Kon-No

Cerasus × yedoensis (cherry 'Somei-yoshino' Fujino) is affected by bacterial gall disease caused by Pseudomonas syringae pv. cerasicola (PSC). C. × yedoensis is often infected with PSC under weak light intensity, which indicates that susceptibility of C. × yedoensis to PSC is affected by light. To evaluate the effects of white light intensity and different light qualities, white or blue, on bacterial gall disease development, we quantitatively assessed the anatomical and histological features of bacterial-inoculated sites on branches of 2-year-old potted C. × yedoensis seedlings grown under different light intensities and qualities. The stronger the white light intensity, the less severe the gall symptoms. Gall formation was suppressed more by blue than white light of the same intensity. The validity of a simple gall index for assessing gall development with the naked eye, via quantitative evaluation of gall shape by measuring gall height, width, and volume, showed that the gall index could be used as a practical method for on-site assessments of gall development. The ratio of degeneration area in the gall remained constant, suggesting the presence of some regulatory mechanism preventing PSC from affecting the entire gall within the plant. Microscopy showed that the gall tissue is composed primarily of callus cells and has voids containing gummy material that is exuded from cracks in the gall, and the periderm develops at the gall foot but not at the gall apex, so the cells at the gall apex were necrotic or collapsed.

Cerasus × yedoensis('Shomei-yoshino' Fujino 樱桃)受到由 Pseudomonas syringae pv. cerasicola(PSC)引起的细菌性瘿病的影响。在弱光条件下,C. × yedoensis 经常感染 PSC,这表明 C. × yedoensis 对 PSC 的敏感性受光照影响。为了评估白光强度和不同光质(白光或蓝光)对细菌性瘿病发生的影响,我们定量评估了在不同光强和光质下生长的两年生盆栽 C. × yedoensis幼苗枝条上细菌接种部位的解剖学和组织学特征。白光强度越强,虫瘿症状越轻。相同强度的蓝光比白光更能抑制虫瘿的形成。通过测量瘿的高度、宽度和体积,对瘿的形状进行定量评估,用肉眼评估瘿发育情况的简单瘿指数的有效性表明,瘿指数可用作现场评估瘿发育情况的实用方法。虫瘿中退化面积的比例保持不变,这表明植物体内存在某种调节机制,防止 PSC 影响整个虫瘿。显微镜检查显示,虫瘿组织主要由胼胝体细胞组成,空隙中含有从虫瘿裂缝中渗出的胶状物质,外皮在虫瘿底部发育,但在虫瘿顶端没有发育,因此虫瘿顶端的细胞已经坏死或塌陷。
{"title":"Effects of Different Light Conditions on Anatomical and Histological Features of Galls in Bacterial Gall Disease of <i>Cerasus</i> × <i>yedoensis</i>.","authors":"Takefumi Ikeda, Misaki Okuda, Makoto Ishihara, Yasuo Kon-No","doi":"10.1094/PHYTO-06-22-0221-R","DOIUrl":"10.1094/PHYTO-06-22-0221-R","url":null,"abstract":"<p><p><i>Cerasus</i> × <i>yedoensis</i> (cherry 'Somei-yoshino' Fujino) is affected by bacterial gall disease caused by <i>Pseudomonas syringae</i> pv. <i>cerasicola</i> (PSC). <i>C.</i> × <i>yedoensis</i> is often infected with PSC under weak light intensity, which indicates that susceptibility of <i>C.</i> × <i>yedoensis</i> to PSC is affected by light. To evaluate the effects of white light intensity and different light qualities, white or blue, on bacterial gall disease development, we quantitatively assessed the anatomical and histological features of bacterial-inoculated sites on branches of 2-year-old potted <i>C</i>. × <i>yedoensis</i> seedlings grown under different light intensities and qualities. The stronger the white light intensity, the less severe the gall symptoms. Gall formation was suppressed more by blue than white light of the same intensity. The validity of a simple gall index for assessing gall development with the naked eye, via quantitative evaluation of gall shape by measuring gall height, width, and volume, showed that the gall index could be used as a practical method for on-site assessments of gall development. The ratio of degeneration area in the gall remained constant, suggesting the presence of some regulatory mechanism preventing PSC from affecting the entire gall within the plant. Microscopy showed that the gall tissue is composed primarily of callus cells and has voids containing gummy material that is exuded from cracks in the gall, and the periderm develops at the gall foot but not at the gall apex, so the cells at the gall apex were necrotic or collapsed.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular characterization of Fusarium isolates from Upland cotton roots in Uzbekistan and whole-genome comparison with isolates from the USA.
IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-10 DOI: 10.1094/PHYTO-04-24-0152-R
Timothy O Jobe, Ibrokhim Y Abdurakhmonov, Mauricio Ulloa, Mohamed Fokar, Zabardast T Buriev, Shukhrat E Shermatov, Abdusalom K Makamov, Dilshod E Usmanov, Mukhtor M Darmanov, Kirk Broders, Margaret L Ellis

Fusarium oxysporum f. sp. vasinfectum (FOV) is a significant cotton (Gossypium spp.) pathogen causing vascular wilt, browning of the vascular tissues, and plant death in the most severe cases. This global disease is responsible for sizeable crop losses annually and is found in many cotton producing regions, including the Republic of Uzbekistan and the USA. Specifically, FOV race 4 (FOV4) has been disrupting production for years. This study aimed to genetically characterize FOV4 isolates causing disease in the main cotton producing region of Uzbekistan and compare with FOV4 isolates from the USA. A field study conducted in the Bukhara region of the Republic of Uzbekistan in the spring of 2022 identified both FOV4 and new Fusarium isolates from Upland cotton exhibiting typical Fusarium wilt symptoms. Molecular markers were initially used to identify isolates of interest, and a phylogenetic analysis was performed using partial EF1-α sequences, followed by a comparative genomic analysis. We also report for the first time the isolation of F. solani and F. commune causing Fusarium wilt in Uzbekistan. Furthermore, we show that the FOV4 population within our sampling region of Uzbekistan may be dominated by a single biotype with an effector profile similar to that of FOV race 7 (FOV7). One of these effector proteins is also present in the F. commune isolate showing virulence to cotton. Whole genome comparisons between FOV races can identify unique genetic markers for FOV4 and aid in the development of tools for breeding FOV resistant cotton varieties.

{"title":"Molecular characterization of <i>Fusarium</i> isolates from Upland cotton roots in Uzbekistan and whole-genome comparison with isolates from the USA.","authors":"Timothy O Jobe, Ibrokhim Y Abdurakhmonov, Mauricio Ulloa, Mohamed Fokar, Zabardast T Buriev, Shukhrat E Shermatov, Abdusalom K Makamov, Dilshod E Usmanov, Mukhtor M Darmanov, Kirk Broders, Margaret L Ellis","doi":"10.1094/PHYTO-04-24-0152-R","DOIUrl":"https://doi.org/10.1094/PHYTO-04-24-0152-R","url":null,"abstract":"<p><p><i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> (FOV) is a significant cotton (<i>Gossypium</i> spp.) pathogen causing vascular wilt, browning of the vascular tissues, and plant death in the most severe cases. This global disease is responsible for sizeable crop losses annually and is found in many cotton producing regions, including the Republic of Uzbekistan and the USA. Specifically, FOV race 4 (FOV4) has been disrupting production for years. This study aimed to genetically characterize FOV4 isolates causing disease in the main cotton producing region of Uzbekistan and compare with FOV4 isolates from the USA. A field study conducted in the Bukhara region of the Republic of Uzbekistan in the spring of 2022 identified both FOV4 and new <i>Fusarium</i> isolates from Upland cotton exhibiting typical Fusarium wilt symptoms. Molecular markers were initially used to identify isolates of interest, and a phylogenetic analysis was performed using partial <i>EF1</i>-α sequences, followed by a comparative genomic analysis. We also report for the first time the isolation of <i>F. solani</i> and <i>F. commune</i> causing Fusarium wilt in Uzbekistan. Furthermore, we show that the FOV4 population within our sampling region of Uzbekistan may be dominated by a single biotype with an effector profile similar to that of FOV race 7 (FOV7). One of these effector proteins is also present in the <i>F. commune</i> isolate showing virulence to cotton. Whole genome comparisons between FOV races can identify unique genetic markers for FOV4 and aid in the development of tools for breeding FOV resistant cotton varieties.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrated analysis of the Passifloraceae virome using public-domain data. 利用公共域数据综合分析西番莲科植物病毒群。
IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-10 DOI: 10.1094/PHYTO-08-24-0269-FI
Monica Higuita, Juliana Sanchez-Yali, Alejandra Perez, Engie Arias, Pablo A Gutierrez

Passifloraceae is a plant family that includes several species of interest in the food, medicinal, and ornamental industries. The most relevant species are the purple and yellow varieties of P. edulis, which are among the most highly prized tropical fruits in the international markets. Unfortunately, the rapid expansion of this crop worldwide has resulted in the emergence of several viral diseases that endangered the productivity of this crop. In this work, we performed an integrated analysis of the Passifloraceae virome using public data. We investigated Pubmed and Genbank records and analyzed all the transcriptome data available for members of this plant family. This analysis resulted in the identification of six novel virus associations and six putative new viral species. We also used RNAseq to inspect virus accumulation levels and mixed infections. Using network analysis, we also examined the global distribution of Passiflora viruses and their associations with alternative hosts, which is valuable information in implementing viral disease management strategies. Our data suggest that a large diversity of viruses remains to be discovered. Finally, we used the information gathered in this work to estimate the cross-transmission risk of viruses in Colombian Passiflora fields.

{"title":"An integrated analysis of the <i>Passifloraceae</i> virome using public-domain data.","authors":"Monica Higuita, Juliana Sanchez-Yali, Alejandra Perez, Engie Arias, Pablo A Gutierrez","doi":"10.1094/PHYTO-08-24-0269-FI","DOIUrl":"https://doi.org/10.1094/PHYTO-08-24-0269-FI","url":null,"abstract":"<p><p><i>Passifloraceae</i> is a plant family that includes several species of interest in the food, medicinal, and ornamental industries. The most relevant species are the purple and yellow varieties of <i>P. edulis</i>, which are among the most highly prized tropical fruits in the international markets. Unfortunately, the rapid expansion of this crop worldwide has resulted in the emergence of several viral diseases that endangered the productivity of this crop. In this work, we performed an integrated analysis of the <i>Passifloraceae</i> virome using public data. We investigated Pubmed and Genbank records and analyzed all the transcriptome data available for members of this plant family. This analysis resulted in the identification of six novel virus associations and six putative new viral species. We also used RNAseq to inspect virus accumulation levels and mixed infections. Using network analysis, we also examined the global distribution of Passiflora viruses and their associations with alternative hosts, which is valuable information in implementing viral disease management strategies. Our data suggest that a large diversity of viruses remains to be discovered. Finally, we used the information gathered in this work to estimate the cross-transmission risk of viruses in Colombian Passiflora fields.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New, complete circularized genomes of Xanthomonas citri pv. mangiferaeindicae produced from short- and long-read co-assembly shed light on strains that emerged a decade ago on mango and cashew in Burkina Faso. 新的、完整的柠檬黄单胞菌(Xanthomonas citri pv. mangiferaeindicae)环化基因组是通过短读码和长读码联合组装产生的,它揭示了十年前在布基纳法索芒果和腰果上出现的菌株。
IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-10 DOI: 10.1094/PHYTO-08-24-0267-SC
Claudine Boyer, Pierre Lefeuvre, Cyrille Zombre, Adrien Rieux, Issa Wonni, Lionel Gagnevin, Olivier Pruvost

We report high-quality genomes of three strains of Xanthomonas citri pv. mangiferaeindicae (Xcm), the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb. Genome mining revealed the presence of several secretion systems (SS) and effectors involved in virulence of xanthomonads with (i) a T1SS of the hlyDB group, (ii) xps and xcs T2SSs, (iii) a T3SS with several type three effectors (T3E), including transcription activator-like effectors (TALE), (iv) several T4SSs associated with plasmid or integrative conjugative elements (ICE) mobility, (v) three T5SS subclasses (Va, Vb and Vc) and (vi) a single i3* T6SS. The two strains isolated in Burkina Faso from mango (Mangifera indica L.) and cashew (Anacardium occidentale L.) differed by only 14 SNPs and shared identical secretion systems and T3E repertoire. Several TALEs were identified in each strain, some of which may target plant genes previously found implicated in disease development in other xanthomonad-associated pathosystems. These results support the emergence in Burkina Faso a decade ago of very closely related strains that became epidemic on mango and cashew, i.e., two distinct host genera of a same plant family. These new genomic resources will contribute to better understand the biology and evolution of this agriculturally major crop pathogen.

我们报告了芒果细菌性腐烂病病原菌柠檬黄单胞菌(Xanthomonas citri pv. mangiferaeindicae,Xcm)三株菌株的高质量基因组,包括该病原菌的病原型菌株和十年前出现的两株来自布基纳法索的菌株。这些菌株含有两到三个质粒,大小从 19 kb 到 86 kb 不等。基因组挖掘发现了黄单胞菌毒力涉及的几种分泌系统(SS)和效应器:(i) hlyDB 组的 T1SS,(ii) xps 和 xcs T2SS,(iii) 带有几种三型效应器(T3E)的 T3SS、(iv)几个与质粒或整合共轭元件(ICE)移动性相关的 T4SS,(v)三个 T5SS 亚类(Va、Vb 和 Vc),(vi)一个 i3* T6SS。在布基纳法索从芒果(Mangifera indica L.)和腰果(Anacardium occidentale L.)中分离出的两株菌株仅有 14 个 SNPs 的差异,并具有相同的分泌系统和 T3E 基因库。在每个菌株中都发现了几个 TALEs,其中一些可能是以前在其他黄单胞菌相关病理系统中发现的与疾病发展有关的植物靶基因。这些结果支持了十年前在布基纳法索出现的密切相关的菌株在芒果和腰果上的流行,即同一植物家族中两个不同的宿主属。这些新的基因组资源将有助于更好地了解这种农业上主要作物病原体的生物学和进化。
{"title":"New, complete circularized genomes of <i>Xanthomonas citri</i> pv. <i>mangiferaeindicae</i> produced from short- and long-read co-assembly shed light on strains that emerged a decade ago on mango and cashew in Burkina Faso.","authors":"Claudine Boyer, Pierre Lefeuvre, Cyrille Zombre, Adrien Rieux, Issa Wonni, Lionel Gagnevin, Olivier Pruvost","doi":"10.1094/PHYTO-08-24-0267-SC","DOIUrl":"https://doi.org/10.1094/PHYTO-08-24-0267-SC","url":null,"abstract":"<p><p>We report high-quality genomes of three strains of <i>Xanthomonas citri</i> pv. <i>mangiferaeindicae</i> (<i>Xcm</i>), the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb. Genome mining revealed the presence of several secretion systems (SS) and effectors involved in virulence of xanthomonads with (i) a T1SS of the hlyDB group, (ii) xps and xcs T2SSs, (iii) a T3SS with several type three effectors (T3E), including transcription activator-like effectors (TALE), (iv) several T4SSs associated with plasmid or integrative conjugative elements (ICE) mobility, (v) three T5SS subclasses (Va, Vb and Vc) and (vi) a single i3* T6SS. The two strains isolated in Burkina Faso from mango (<i>Mangifera indica</i> L.) and cashew (<i>Anacardium occidentale</i> L.) differed by only 14 SNPs and shared identical secretion systems and T3E repertoire. Several TALEs were identified in each strain, some of which may target plant genes previously found implicated in disease development in other xanthomonad-associated pathosystems. These results support the emergence in Burkina Faso a decade ago of very closely related strains that became epidemic on mango and cashew, i.e., two distinct host genera of a same plant family. These new genomic resources will contribute to better understand the biology and evolution of this agriculturally major crop pathogen.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Phytopathology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1