Multimodal electrohydrodynamic jet printing-based microstructure-sensitized flexible pressure sensor

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Science and Technology Pub Date : 2024-05-29 DOI:10.1016/j.compscitech.2024.110686
Hongji Guo , Wuhao Zou , Tianming Zhao , Jiawen Liang , Ya Zhong , Peilin Zhou , Ying Zhao , Lianqing Liu , Haibo Yu
{"title":"Multimodal electrohydrodynamic jet printing-based microstructure-sensitized flexible pressure sensor","authors":"Hongji Guo ,&nbsp;Wuhao Zou ,&nbsp;Tianming Zhao ,&nbsp;Jiawen Liang ,&nbsp;Ya Zhong ,&nbsp;Peilin Zhou ,&nbsp;Ying Zhao ,&nbsp;Lianqing Liu ,&nbsp;Haibo Yu","doi":"10.1016/j.compscitech.2024.110686","DOIUrl":null,"url":null,"abstract":"<div><p>Surface modification with micro/nanostructures is a common approach for enhancing the performance of flexible pressure sensors. However, the current fabrication of the singular functionality of instruments and redundancy of processes increase the complexity of the sensor manufacturing process. In this study, we developed a multilayer microstructure-enhanced flexible capacitive pressure sensor based on the multimodal electrohydrodynamic jet (E-jet) printing technology. The experimental results demonstrate that the sensors incorporating the microstructure-sensitized electrode layer and the polyvinyl alcohol/graphene/polydimethylsiloxane dielectric layer exhibit the following characteristics: high sensitivity (0.3139 kPa<sup>−1</sup>/0–2 kPa), low limit of detection (∼100 mg), and stable performance even after 10,000 cycles. Moreover, microstructure-enhanced sensors have considerable potential for human behavior detection, such as detecting fluid flow, tracking muscle movements, and measuring pulse rates. Finally, microstructure-enhanced sensors fabricated using the E-jet printing method present a novel approach for designing sensitized structures in capacitive pressure sensors.</p></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824002562","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Surface modification with micro/nanostructures is a common approach for enhancing the performance of flexible pressure sensors. However, the current fabrication of the singular functionality of instruments and redundancy of processes increase the complexity of the sensor manufacturing process. In this study, we developed a multilayer microstructure-enhanced flexible capacitive pressure sensor based on the multimodal electrohydrodynamic jet (E-jet) printing technology. The experimental results demonstrate that the sensors incorporating the microstructure-sensitized electrode layer and the polyvinyl alcohol/graphene/polydimethylsiloxane dielectric layer exhibit the following characteristics: high sensitivity (0.3139 kPa−1/0–2 kPa), low limit of detection (∼100 mg), and stable performance even after 10,000 cycles. Moreover, microstructure-enhanced sensors have considerable potential for human behavior detection, such as detecting fluid flow, tracking muscle movements, and measuring pulse rates. Finally, microstructure-enhanced sensors fabricated using the E-jet printing method present a novel approach for designing sensitized structures in capacitive pressure sensors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多模态电流体动力喷射打印技术的微结构敏化柔性压力传感器
利用微/纳米结构进行表面改性是提高柔性压力传感器性能的常用方法。然而,目前制造仪器功能的单一性和工艺的冗余性增加了传感器制造工艺的复杂性。在这项研究中,我们开发了一种基于多模态电流体动力喷射(E-jet)打印技术的多层微结构增强柔性电容式压力传感器。实验结果表明,包含微结构敏化电极层和聚乙烯醇/石墨烯/聚二甲基硅氧烷介电层的传感器具有以下特点:高灵敏度(0.3139 kPa-1/0-2 kPa)、低检测限(∼100 mg)以及即使在循环使用 10,000 次后仍能保持稳定的性能。此外,微结构增强型传感器在人类行为检测方面也具有相当大的潜力,如检测流体流动、跟踪肌肉运动和测量脉搏率等。最后,利用电子喷射打印方法制造的微结构增强型传感器为电容式压力传感器的敏化结构设计提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
期刊最新文献
Bioinspired 3D printed metamaterial for wideband microwave absorption and aerodynamic efficiency 4D printed continuous fiber-reinforced self-locking Miura-ori composites with high energy absorption and cyclability A novel method for reducing the welding pressure requirement in resistance welding of thermoplastic composites Micro-buckling resistant unidirectional glass fiber composites with excellent transverse and longitudinal flexural properties from cross-linking by nano-/micro-aramid fibers Continuous fiber-reinforced 2.5D hybrid lattice structures with superior compression performance via self-supporting suspension printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1