Effectiveness of multi-criteria optimization in combination with knowledge-based modeling in radiotherapy of left-sided breast including regional nodes

Sornjarod Oonsiri, Sakda Kingkaew, Mananchaya Vimolnoch, Nichakan Chatchumnan, Nuttha Plangpleng, Puntiwa Oonsiri
{"title":"Effectiveness of multi-criteria optimization in combination with knowledge-based modeling in radiotherapy of left-sided breast including regional nodes","authors":"Sornjarod Oonsiri,&nbsp;Sakda Kingkaew,&nbsp;Mananchaya Vimolnoch,&nbsp;Nichakan Chatchumnan,&nbsp;Nuttha Plangpleng,&nbsp;Puntiwa Oonsiri","doi":"10.1016/j.phro.2024.100595","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-criteria optimization (MCO) is a method that was added to treatment planning to create high-quality treatment plans. This study aimed to investigate the effectiveness of MCO in combination with knowledge-based planning (KBP) in radiotherapy for left-sided breasts, including regional nodes. Dose/volume parameters were evaluated for manual plans (MP), KBP, and KBP + MCO. Planning target volume doses of MP had better coverage while KBP + MCO plans demonstrated the lowest organ at risk doses. KBP and KBP + MCO plans had increasing complexity as expressed in the number of monitor units.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000654/pdfft?md5=aad13395cae5b20bf3da4050293db116&pid=1-s2.0-S2405631624000654-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-criteria optimization (MCO) is a method that was added to treatment planning to create high-quality treatment plans. This study aimed to investigate the effectiveness of MCO in combination with knowledge-based planning (KBP) in radiotherapy for left-sided breasts, including regional nodes. Dose/volume parameters were evaluated for manual plans (MP), KBP, and KBP + MCO. Planning target volume doses of MP had better coverage while KBP + MCO plans demonstrated the lowest organ at risk doses. KBP and KBP + MCO plans had increasing complexity as expressed in the number of monitor units.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多标准优化与基于知识的建模相结合在包括区域结节在内的左侧乳腺放射治疗中的有效性
多标准优化(MCO)是一种添加到治疗计划中的方法,用于创建高质量的治疗计划。本研究旨在探讨 MCO 与基于知识的计划(KBP)相结合在左侧乳房(包括区域结节)放射治疗中的有效性。对手动计划(MP)、KBP 和 KBP + MCO 的剂量/体积参数进行了评估。MP计划的靶体积剂量覆盖范围更大,而KBP + MCO计划的风险器官剂量最低。KBP 和 KBP + MCO 计划的复杂性越来越高,具体表现在监测单元的数量上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
期刊最新文献
Results of 2023 survey on the use of synthetic computed tomography for magnetic resonance Imaging-only radiotherapy: Current status and future steps Head and neck automatic multi-organ segmentation on Dual-Energy Computed Tomography Automatic segmentation for magnetic resonance imaging guided individual elective lymph node irradiation in head and neck cancer patients Development of a novel 3D-printed dynamic anthropomorphic thorax phantom for evaluation of four-dimensional computed tomography Technical feasibility of delivering a simultaneous integrated boost in partial breast irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1