首页 > 最新文献

Physics and Imaging in Radiation Oncology最新文献

英文 中文
Incorporating patient-specific information for the development of rectal tumor auto-segmentation models for online adaptive magnetic resonance Image-guided radiotherapy 为在线自适应磁共振图像引导放射治疗开发直肠肿瘤自动分割模型时纳入患者特异性信息
IF 3.4 Q2 ONCOLOGY Pub Date : 2024-09-16 DOI: 10.1016/j.phro.2024.100648

Background and purpose

In online adaptive magnetic resonance image (MRI)-guided radiotherapy (MRIgRT), manual contouring of rectal tumors on daily images is labor-intensive and time-consuming. Automation of this task is complex due to substantial variation in tumor shape and location between patients. The aim of this work was to investigate different approaches of propagating patient-specific prior information to the online adaptive treatment fractions to improve deep-learning based auto-segmentation of rectal tumors.

Materials and methods

243 T2-weighted MRI scans of 49 rectal cancer patients treated on the 1.5T MR-Linear accelerator (MR-Linac) were utilized to train models to segment rectal tumors. As benchmark, an MRI_only auto-segmentation model was trained. Three approaches of including a patient-specific prior were studied: 1. include the segmentations of fraction 1 as extra input channel for the auto-segmentation of subsequent fractions, 2. fine-tuning of the MRI_only model to fraction 1 (PSF_1) and 3. fine-tuning of the MRI_only model on all earlier fractions (PSF_cumulative). Auto-segmentations were compared to the manual segmentation using geometric similarity metrics. Clinical impact was assessed by evaluating post-treatment target coverage.

Results

All patient-specific methods outperformed the MRI_only segmentation approach. Median 95th percentile Hausdorff (95HD) were 22.0 (range: 6.1–76.6) mm for MRI_only segmentation, 9.9 (range: 2.5–38.2) mm for MRI+prior segmentation, 6.4 (range: 2.4–17.8) mm for PSF_1 and 4.8 (range: 1.7–26.9) mm for PSF_cumulative. PSF_cumulative was found to be superior to PSF_1 from fraction 4 onward (p = 0.014).

Conclusion

Patient-specific fine-tuning of automatically segmented rectal tumors, using images and segmentations from all previous fractions, yields superior quality compared to other auto-segmentation approaches.

背景和目的在在线自适应磁共振成像(MRI)引导放疗(MRIgRT)中,在日常图像上手动绘制直肠肿瘤轮廓是一项劳动密集型且耗时的工作。由于不同患者的肿瘤形状和位置存在很大差异,这项任务的自动化非常复杂。这项工作的目的是研究向在线自适应治疗分数传播患者特定先验信息的不同方法,以改进基于深度学习的直肠肿瘤自动分割。作为基准,训练了一个仅使用 MRI 的自动分割模型。研究了包含患者特异性先验的三种方法:1.将第 1 部分的分割作为后续部分自动分割的额外输入通道;2.对第 1 部分的纯 MRI 模型进行微调(PSF_1);3.对所有早期部分的纯 MRI 模型进行微调(PSF_cumulative)。使用几何相似度指标将自动分割与手动分割进行比较。通过评估治疗后的目标覆盖范围来评估临床效果。仅核磁共振成像分割的第 95 百分位数 Hausdorff (95HD) 中值为 22.0(范围:6.1-76.6)毫米,核磁共振成像+先前分割为 9.9(范围:2.5-38.2)毫米,PSF_1 为 6.4(范围:2.4-17.8)毫米,PSF_cumulative 为 4.8(范围:1.7-26.9)毫米。PSF_cumulative从第4分段开始就优于PSF_1(p = 0.014)。结论与其他自动分段方法相比,使用之前所有分段的图像和分段对患者特定的直肠肿瘤自动分段进行微调可获得更高的质量。
{"title":"Incorporating patient-specific information for the development of rectal tumor auto-segmentation models for online adaptive magnetic resonance Image-guided radiotherapy","authors":"","doi":"10.1016/j.phro.2024.100648","DOIUrl":"10.1016/j.phro.2024.100648","url":null,"abstract":"<div><h3>Background and purpose</h3><p>In online adaptive magnetic resonance image (MRI)-guided radiotherapy (MRIgRT), manual contouring of rectal tumors on daily images is labor-intensive and time-consuming. Automation of this task is complex due to substantial variation in tumor shape and location between patients. The aim of this work was to investigate different approaches of propagating patient-specific prior information to the online adaptive treatment fractions to improve deep-learning based auto-segmentation of rectal tumors.</p></div><div><h3>Materials and methods</h3><p>243 T2-weighted MRI scans of 49 rectal cancer patients treated on the 1.5T MR-Linear accelerator (MR-Linac) were utilized to train models to segment rectal tumors. As benchmark, an MRI_only auto-segmentation model was trained. Three approaches of including a patient-specific prior were studied: 1. include the segmentations of fraction 1 as extra input channel for the auto-segmentation of subsequent fractions, 2. fine-tuning of the MRI_only model to fraction 1 (PSF_1) and 3. fine-tuning of the MRI_only model on all earlier fractions (PSF_cumulative). Auto-segmentations were compared to the manual segmentation using geometric similarity metrics. Clinical impact was assessed by evaluating post-treatment target coverage.</p></div><div><h3>Results</h3><p>All patient-specific methods outperformed the MRI_only segmentation approach. Median 95th percentile Hausdorff (95HD) were 22.0 (range: 6.1–76.6) mm for MRI_only segmentation, 9.9 (range: 2.5–38.2) mm for MRI+prior segmentation, 6.4 (range: 2.4–17.8) mm for PSF_1 and 4.8 (range: 1.7–26.9) mm for PSF_cumulative. PSF_cumulative was found to be superior to PSF_1 from fraction 4 onward (p = 0.014).</p></div><div><h3>Conclusion</h3><p>Patient-specific fine-tuning of automatically segmented rectal tumors, using images and segmentations from all previous fractions, yields superior quality compared to other auto-segmentation approaches.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624001180/pdfft?md5=bf30e0e5baddbf3b8635126444c1301f&pid=1-s2.0-S2405631624001180-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning automated treatment planning for online magnetic resonance guided adaptive radiotherapy of prostate cancer 前列腺癌在线磁共振引导自适应放疗的机器学习自动治疗计划
IF 3.4 Q2 ONCOLOGY Pub Date : 2024-09-14 DOI: 10.1016/j.phro.2024.100649

Background and purpose

No best practices currently exist for achieving high quality radiation therapy (RT) treatment plan adaptation during magnetic resonance (MR) guided RT of prostate cancer. This study validates the use of machine learning (ML) automated RT treatment plan adaptation and benchmarks it against current clinical RT plan adaptation methods.

Materials and methods

We trained an atlas-based ML automated treatment planning model using reference MR RT treatment plans (42.7 Gy in 7 fractions) from 46 patients with prostate cancer previously treated at our institution. For a held-out test set of 38 patients, retrospectively generated ML RT plans were compared to clinical human-generated adaptive RT plans for all 266 fractions. Differences in dose-volume metrics and clinical objective pass rates were evaluated using Wilcoxon tests (p < 0.05) and Exact McNemar tests (p < 0.05), respectively.

Results

Compared to clinical RT plans, ML RT plans significantly increased sparing and objective pass rates of the rectum, bladder, and left femur. The mean ± standard deviation of rectum D20 and D50 in ML RT plans were 2.5 ± 2.2 Gy and 1.6 ± 1.3 Gy lower than clinical RT plans, respectively, with 14 % higher pass rates; bladder D40 was 4.6 ± 2.9 Gy lower with a 20 % higher pass rate; and the left femur D5 was 0.8 ± 1.8 Gy lower with a 7 % higher pass rate.

Conclusions

ML automated RT treatment plan adaptation increases robustness to interfractional anatomical changes compared to current clinical adaptive RT practices by increasing compliance to treatment objectives.

背景和目的在磁共振(MR)引导的前列腺癌 RT 治疗过程中,目前尚无实现高质量放射治疗(RT)治疗计划适应性的最佳实践。本研究验证了机器学习(ML)自动 RT 治疗计划适应性的使用,并将其与当前的临床 RT 计划适应性方法进行了比较。材料和方法我们使用先前在本机构接受治疗的 46 名前列腺癌患者的参考 MR RT 治疗计划(42.7 Gy,分 7 次)训练了基于图集的 ML 自动治疗计划模型。在保留的 38 例患者测试集中,我们将回顾性生成的 ML RT 计划与临床人工生成的自适应 RT 计划进行了比较,结果显示所有 266 个分段都是如此。结果与临床 RT 计划相比,ML RT 计划显著提高了直肠、膀胱和左股骨的疏通率和客观通过率。与临床 RT 计划相比,ML RT 计划中直肠 D20 和 D50 的平均值(± 标准差)分别为 2.5 ± 2.2 Gy 和 1.6 ± 1.3 Gy,通过率提高了 14%;膀胱 D40 的平均值(± 标准差)为 4.6 ± 2.9 Gy,通过率提高了 20%;左股骨 D5 的平均值(± 标准差)为 0.结论与目前的临床适应性 RT 相比,自动 RT 治疗计划适应性可提高对治疗目标的依从性,从而增强对点阵间解剖变化的稳健性。
{"title":"Machine learning automated treatment planning for online magnetic resonance guided adaptive radiotherapy of prostate cancer","authors":"","doi":"10.1016/j.phro.2024.100649","DOIUrl":"10.1016/j.phro.2024.100649","url":null,"abstract":"<div><h3>Background and purpose</h3><p>No best practices currently exist for achieving high quality radiation therapy (RT) treatment plan adaptation during magnetic resonance (MR) guided RT of prostate cancer. This study validates the use of machine learning (ML) automated RT treatment plan adaptation and benchmarks it against current clinical RT plan adaptation methods.</p></div><div><h3>Materials and methods</h3><p>We trained an atlas-based ML automated treatment planning model using reference MR RT treatment plans (42.7 Gy in 7 fractions) from 46 patients with prostate cancer previously treated at our institution. For a held-out test set of 38 patients, retrospectively generated ML RT plans were compared to clinical human-generated adaptive RT plans for all 266 fractions. Differences in dose-volume metrics and clinical objective pass rates were evaluated using Wilcoxon tests (p &lt; 0.05) and Exact McNemar tests (p &lt; 0.05), respectively.</p></div><div><h3>Results</h3><p>Compared to clinical RT plans, ML RT plans significantly increased sparing and objective pass rates of the rectum, bladder, and left femur. The mean ± standard deviation of rectum D20 and D50 in ML RT plans were 2.5 ± 2.2 Gy and 1.6 ± 1.3 Gy lower than clinical RT plans, respectively, with 14 % higher pass rates; bladder D40 was 4.6 ± 2.9 Gy lower with a 20 % higher pass rate; and the left femur D5 was 0.8 ± 1.8 Gy lower with a 7 % higher pass rate.</p></div><div><h3>Conclusions</h3><p>ML automated RT treatment plan adaptation increases robustness to interfractional anatomical changes compared to current clinical adaptive RT practices by increasing compliance to treatment objectives.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624001192/pdfft?md5=2171029966e3c5a6468365da4d535bfd&pid=1-s2.0-S2405631624001192-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tools and recommendations for commissioning and quality assurance of deformable image registration in radiotherapy 放射治疗中可变形图像配准的调试和质量保证工具与建议
IF 3.4 Q2 ONCOLOGY Pub Date : 2024-09-14 DOI: 10.1016/j.phro.2024.100647

Multiple tools are available for commissioning and quality assurance of deformable image registration (DIR), each with their own advantages and disadvantages in the context of radiotherapy. The selection of appropriate tools should depend on the DIR application with its corresponding available input, desired output, and time requirement. Discussions were hosted by the ESTRO Physics Workshop 2021 on Commissioning and Quality Assurance for DIR in Radiotherapy. A consensus was reached on what requirements are needed for commissioning and quality assurance for different applications, and what combination of tools is associated with this.

For commissioning, we recommend the target registration error of manually annotated anatomical landmarks or the distance-to-agreement of manually delineated contours to evaluate alignment. These should be supplemented by the distance to discordance and/or biomechanical criteria to evaluate consistency and plausibility. Digital phantoms can be useful to evaluate DIR for dose accumulation but are currently only available for a limited range of anatomies, image modalities and types of deformations.

For quality assurance of DIR for contour propagation, we recommend at least a visual inspection of the registered image and contour. For quality assurance of DIR for warping quantitative information such as dose, Hounsfield units or positron emission tomography-data, we recommend visual inspection of the registered image together with image similarity to evaluate alignment, supplemented by an inspection of the Jacobian determinant or bending energy to evaluate plausibility, and by the dose (gradient) to evaluate relevance. We acknowledge that some of these metrics are still missing in currently available commercial solutions.

有多种工具可用于可变形图像配准(DIR)的调试和质量保证,在放射治疗方面各有利弊。选择合适的工具应取决于 DIR 应用及其相应的可用输入、所需输出和时间要求。ESTRO 2021 物理研讨会就放疗中 DIR 的调试和质量保证进行了讨论。在调试方面,我们建议使用人工标注解剖标志的目标注册误差或人工划定轮廓的距离-吻合度来评估对准情况。此外,还应辅之以不一致距离和/或生物力学标准,以评估一致性和可信度。数字模型可用于评估剂量累积的 DIR,但目前仅适用于有限范围的解剖、图像模式和变形类型。为了保证对剂量、Hounsfield 单位或正电子发射断层扫描数据等定量信息进行翘曲处理的 DIR 的质量,我们建议对注册图像进行目视检查,并结合图像相似性来评估对齐情况,同时辅以雅各布行列式或弯曲能量检查来评估可信度,并通过剂量(梯度)来评估相关性。我们承认,目前可用的商业解决方案中仍缺少其中一些指标。
{"title":"Tools and recommendations for commissioning and quality assurance of deformable image registration in radiotherapy","authors":"","doi":"10.1016/j.phro.2024.100647","DOIUrl":"10.1016/j.phro.2024.100647","url":null,"abstract":"<div><p>Multiple tools are available for commissioning and quality assurance of deformable image registration (DIR), each with their own advantages and disadvantages in the context of radiotherapy. The selection of appropriate tools should depend on the DIR application with its corresponding available input, desired output, and time requirement. Discussions were hosted by the ESTRO Physics Workshop 2021 on Commissioning and Quality Assurance for DIR in Radiotherapy. A consensus was reached on what requirements are needed for commissioning and quality assurance for different applications, and what combination of tools is associated with this.</p><p>For commissioning, we recommend the target registration error of manually annotated anatomical landmarks or the distance-to-agreement of manually delineated contours to evaluate alignment. These should be supplemented by the distance to discordance and/or biomechanical criteria to evaluate consistency and plausibility. Digital phantoms can be useful to evaluate DIR for dose accumulation but are currently only available for a limited range of anatomies, image modalities and types of deformations.</p><p>For quality assurance of DIR for contour propagation, we recommend at least a visual inspection of the registered image and contour. For quality assurance of DIR for warping quantitative information such as dose, Hounsfield units or positron emission tomography-data, we recommend visual inspection of the registered image together with image similarity to evaluate alignment, supplemented by an inspection of the Jacobian determinant or bending energy to evaluate plausibility, and by the dose (gradient) to evaluate relevance. We acknowledge that some of these metrics are still missing in currently available commercial solutions.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624001179/pdfft?md5=117e12fc4f59df7add1108a1a3c70176&pid=1-s2.0-S2405631624001179-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cherenkov imaging combined with scintillation dosimetry provides real-time positional and dose monitoring for radiotherapy patients with cardiac implanted electronic devices 切伦科夫成像与闪烁剂量测定相结合,为植入心脏电子装置的放疗患者提供实时位置和剂量监测
IF 3.4 Q2 ONCOLOGY Pub Date : 2024-09-12 DOI: 10.1016/j.phro.2024.100642

Background and purpose

Cardiac implanted electronic devices (CIED) require dose monitoring during each fraction of radiotherapy, which can be time consuming and may have delayed read-out times. This study explores the potential of Cherenkov imaging combined with scintillation dosimetry as an alternative verification system.

Methods and materials

Time-gated, complementary metal–oxide–semiconductor (iCMOS) cameras were used to collect video images of anthropomorphic phantoms and patients undergoing radiation treatment near chest wall cardiac devices. Scintillator discs and optically stimulated luminescence dosimeters (OSLDs) were used for dose measurement. Accuracy of spatial delivery was assessed by overlaying predicted surface dose outlines derived from the treatment planning system (TPS) with the Cherenkov images. Dose measurements from OSLDs and scintillators were compared.

Results

In phantom studies, Cherenkov images visibly indicated when dose was delivered to the CIED as compared to non-overlapping dose deliveries. Comparison with dose overlays revealed congruence at the planned position and non-congruence when the phantom was shifted from the initial position. Absolute doses derived from scintillator discs aligned well with the OSLD measurements and TPS predictions for three different positions, measuring within 10 % for in-field positions and within 5 % for out-of-field positions. For two patients with CIEDs imaged over 18 fractions, Cherenkov imaging confirmed positional accuracy for all fractions, and dose measured by scintillator discs deviated by <0.015 Gy from the OSLD measurements.

Conclusions

Cherenkov imaging combined with scintillation dosimetry presents an alternative methodology for CIED monitoring with the added benefit of instantly detecting deviations, enabling timely corrective actions or proper patient triage.

背景和目的心脏植入电子装置(CIED)需要在每次放疗期间进行剂量监测,这可能会耗费大量时间,而且可能会延迟读出时间。本研究探讨了切伦科夫成像与闪烁剂量测定相结合作为替代验证系统的潜力。方法和材料使用时间门控互补金属氧化物半导体(iCMOS)相机收集拟人化模型和正在胸壁心脏设备附近接受放射治疗的患者的视频图像。闪烁盘和光学激发发光剂量计(OSLD)用于剂量测量。通过将治疗计划系统(TPS)得出的预测表面剂量轮廓与切伦科夫图像进行叠加,评估了空间给药的准确性。结果在模型研究中,与非重叠剂量投放相比,切伦科夫图像能明显显示何时将剂量投放到 CIED。与剂量叠加进行比较后发现,在计划位置上的剂量是一致的,而当模型从初始位置移动时则不一致。在三个不同的位置,闪烁盘得出的绝对剂量与 OSLD 测量值和 TPS 预测值十分吻合,场内位置的测量值在 10% 以内,场外位置的测量值在 5% 以内。结论切伦科夫成像与闪烁剂量测定相结合,为CIED监测提供了另一种方法,其优点是能即时发现偏差,从而及时采取纠正措施或对患者进行适当分流。
{"title":"Cherenkov imaging combined with scintillation dosimetry provides real-time positional and dose monitoring for radiotherapy patients with cardiac implanted electronic devices","authors":"","doi":"10.1016/j.phro.2024.100642","DOIUrl":"10.1016/j.phro.2024.100642","url":null,"abstract":"<div><h3>Background and purpose</h3><p>Cardiac implanted electronic devices (CIED) require dose monitoring during each fraction of radiotherapy, which can be time consuming and may have delayed read-out times. This study explores the potential of Cherenkov imaging combined with scintillation dosimetry as an alternative verification system.</p></div><div><h3>Methods and materials</h3><p>Time-gated, complementary metal–oxide–semiconductor (iCMOS) cameras were used to collect video images of anthropomorphic phantoms and patients undergoing radiation treatment near chest wall cardiac devices. Scintillator discs and optically stimulated luminescence dosimeters (OSLDs) were used for dose measurement. Accuracy of spatial delivery was assessed by overlaying predicted surface dose outlines derived from the treatment planning system (TPS) with the Cherenkov images. Dose measurements from OSLDs and scintillators were compared.</p></div><div><h3>Results</h3><p>In phantom studies, Cherenkov images visibly indicated when dose was delivered to the CIED as compared to non-overlapping dose deliveries. Comparison with dose overlays revealed congruence at the planned position and non-congruence when the phantom was shifted from the initial position. Absolute doses derived from scintillator discs aligned well with the OSLD measurements and TPS predictions for three different positions, measuring within 10 % for in-field positions and within 5 % for out-of-field positions. For two patients with CIEDs imaged over 18 fractions, Cherenkov imaging confirmed positional accuracy for all fractions, and dose measured by scintillator discs deviated by &lt;0.015 Gy from the OSLD measurements.</p></div><div><h3>Conclusions</h3><p>Cherenkov imaging combined with scintillation dosimetry presents an alternative methodology for CIED monitoring with the added benefit of instantly detecting deviations, enabling timely corrective actions or proper patient triage.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S240563162400112X/pdfft?md5=bcc54fe1b2a9adcb0173fd6499217ee7&pid=1-s2.0-S240563162400112X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated plan generation for prostate radiotherapy patients using deep learning and scripted optimization 利用深度学习和脚本优化为前列腺放疗患者自动生成计划
IF 3.4 Q2 ONCOLOGY Pub Date : 2024-09-08 DOI: 10.1016/j.phro.2024.100641

Background and Purpose

Treatment planning is a time-intensive task that could be automated. We aimed to develop a “single-click” workflow, fully deployed within a commercial treatment planning system (TPS), for autoplanning prostate radiotherapy treatment plans using predictions from a deep learning model (DLM).

Materials and Methods

Automatically generated treatment plans were created with a single script, executed from within a commercial TPS scripting environment, that performed two stages sequentially. Initially, a 3D dose distribution was predicted with a ResUNet DLM. The DLM was trained and validated using previously treated datasets (n = 120) which used 3D contours as inputs. Following this, dose predictions were converted into treatment plans by extracting dose-volume metrics from the predictions to use as objectives for the inverse optimizer within the TPS. An independent test dataset (n = 20) was used to evaluate the similarity between automated and clinical plans.

Results

For planning target volumes, the median percentage difference and interquartile range between the automatically generated plans and clinical plans were 0.4% [0.2-1.1%] for the V100%, −0.5% [(−1.0)-(−0.2)%] for D99% and −0.5% [(−1.0)-(−0.2)%] for D95%. Bladder and rectum volume-at-dose objectives agreed within −6.1% [(−12.5)-0.9%]. The conversion of the DLM prediction into a treatment plan took 15 min [13-16 min].

Conclusions

An automatic plan generation workflow that uses a DL model with scripted optimization was fully deployed in a commercial TPS. Autoplans were compared to previously treated clinical plans and were found to be non-inferior.

背景和目的治疗计划是一项时间密集型任务,可以实现自动化。我们的目标是开发一种 "单击 "工作流程,在商用治疗计划系统(TPS)中全面部署,利用深度学习模型(DLM)的预测结果自动规划前列腺放疗治疗计划。材料与方法自动生成的治疗计划是通过一个脚本创建的,该脚本在商用 TPS 脚本环境中执行,依次执行两个阶段。首先,使用 ResUNet DLM 预测三维剂量分布。DLM 使用以前处理过的数据集(n = 120)进行训练和验证,这些数据集使用三维轮廓作为输入。之后,通过从预测中提取剂量-体积指标,将剂量预测转换为治疗计划,作为 TPS 中反优化器的目标。结果对于规划目标体积,自动生成的计划与临床计划之间的中位百分比差异和四分位数范围分别为:V100%为 0.4% [0.2-1.1%],D99%为-0.5% [(-1.0)-(-0.2)%],D95%为-0.5% [(-1.0)-(-0.2)%]。膀胱和直肠剂量容积目标的一致性在-6.1%[(-12.5)-0.9%]以内。将 DLM 预测转换为治疗计划耗时 15 分钟[13-16 分钟]。结论在商用 TPS 中全面部署了使用带脚本优化的 DL 模型的自动计划生成工作流程。将自动计划与之前的临床治疗计划进行了比较,发现两者并无差别。
{"title":"Automated plan generation for prostate radiotherapy patients using deep learning and scripted optimization","authors":"","doi":"10.1016/j.phro.2024.100641","DOIUrl":"10.1016/j.phro.2024.100641","url":null,"abstract":"<div><h3>Background and Purpose</h3><p>Treatment planning is a time-intensive task that could be automated. We aimed to develop a “single-click” workflow, fully deployed within a commercial treatment planning system (TPS), for autoplanning prostate radiotherapy treatment plans using predictions from a deep learning model (DLM).</p></div><div><h3>Materials and Methods</h3><p>Automatically generated treatment plans were created with a single script, executed from within a commercial TPS scripting environment, that performed two stages sequentially. Initially, a 3D dose distribution was predicted with a ResUNet DLM. The DLM was trained and validated using previously treated datasets (n = 120) which used 3D contours as inputs. Following this, dose predictions were converted into treatment plans by extracting dose-volume metrics from the predictions to use as objectives for the inverse optimizer within the TPS. An independent test dataset (n = 20) was used to evaluate the similarity between automated and clinical plans.</p></div><div><h3>Results</h3><p>For planning target volumes, the median percentage difference and interquartile range between the automatically generated plans and clinical plans were 0.4% [0.2-1.1%] for the V<sub>100%</sub>, −0.5% [(−1.0)-(−0.2)%] for D<sub>99%</sub> and −0.5% [(−1.0)-(−0.2)%] for D<sub>95%</sub>. Bladder and rectum volume-at-dose objectives agreed within −6.1% [(−12.5)-0.9%]. The conversion of the DLM prediction into a treatment plan took 15 min [13-16 min].</p></div><div><h3>Conclusions</h3><p>An automatic plan generation workflow that uses a DL model with scripted optimization was fully deployed in a commercial TPS. Autoplans were compared to previously treated clinical plans and were found to be non-inferior.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624001118/pdfft?md5=6fcbb63bca1c9fd02b6fc82ecbe8a942&pid=1-s2.0-S2405631624001118-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimising inter-patient image registration for image-based data mining in breast radiotherapy 为乳腺放射治疗中基于图像的数据挖掘优化患者间图像配准
IF 3.4 Q2 ONCOLOGY Pub Date : 2024-09-07 DOI: 10.1016/j.phro.2024.100635

Background and purpose

Image-based data mining (IBDM) requires spatial normalisation to reference anatomy, which is challenging in breast radiotherapy due to variations in the treatment position, breast shape and volume. We aim to optimise spatial normalisation for breast IBDM.

Materials and methods

Data from 996 patients treated with radiotherapy for early-stage breast cancer, recruited in the REQUITE study, were included. Patients were treated supine (n = 811), with either bilateral or ipsilateral arm(s) raised (551/260, respectively) or in prone position (n = 185). Four deformable image registration (DIR) configurations for extrathoracic spatial normalisation were tested. We selected the best-performing DIR configuration and further investigated two pathways: i) registering prone/supine cohorts independently and ii) registering all patients to a supine reference. The impact of arm positioning in the supine cohort was quantified. DIR accuracy was estimated using Normalised Cross Correlation (NCC), Dice Similarity Coefficient (DSC), mean Distance to Agreement (MDA), 95 % Hausdorff Distance (95 %HD), and inter-patient landmark registration uncertainty (ILRU).

Results

DIR using B-spline and normalised mutual information (NMI) performed the best across all evaluation metrics. Supine-supine registrations yielded highest accuracy (0.98 ± 0.01, 0.91 ± 0.04, 0.23 ± 0.19 cm, 1.17 ± 1.18 cm, 0.51 ± 0.26 cm for NCC, DSC, MDA, 95 %HD, and ILRU), followed by prone-prone and supine-prone registrations. Arm positioning had no significant impact on registration performance. For the best DIR strategy, uncertainty of 0.44 and 0.81 cm in the breast and shoulder regions was found.

Conclusions

B-spline algorithm using NMI and registered supine and prone cohorts independently provides the most optimal spatial normalisation strategy for breast IBDM.

背景和目的基于图像的数据挖掘(IBDM)需要参照解剖学进行空间归一化,由于治疗位置、乳房形状和体积的变化,这在乳腺放疗中具有挑战性。我们的目标是优化乳腺 IBDM 的空间归一化。材料与方法纳入了在 REQUITE 研究中招募的 996 名早期乳腺癌放疗患者的数据。患者采用仰卧位(811 人)、双侧或同侧手臂抬高(分别为 551/260 人)或俯卧位(185 人)进行治疗。我们测试了四种用于胸廓外空间归一化的可变形图像配准(DIR)配置。我们选择了表现最好的 DIR 配置,并进一步研究了两种途径:i)独立配准俯卧/仰卧队列;ii)将所有患者配准到仰卧参照物。对仰卧队列中手臂定位的影响进行了量化。使用归一化交叉相关性 (NCC)、骰子相似系数 (DSC)、平均一致距离 (MDA)、95 % Hausdorff 距离 (95 %HD) 和患者间地标注册不确定性 (ILRU) 对 DIR 的准确性进行了评估。仰卧位登记的准确率最高(0.98 ± 0.01、0.91 ± 0.04、0.23 ± 0.19 厘米、1.17 ± 1.18 厘米、0.51 ± 0.26 厘米,NCC、DSC、MDA、95 %HD 和 ILRU),其次是俯卧位和仰卧位登记。手臂定位对配准性能没有明显影响。对于最佳的 DIR 策略,乳房和肩部区域的不确定性分别为 0.44 厘米和 0.81 厘米。
{"title":"Optimising inter-patient image registration for image-based data mining in breast radiotherapy","authors":"","doi":"10.1016/j.phro.2024.100635","DOIUrl":"10.1016/j.phro.2024.100635","url":null,"abstract":"<div><h3>Background and purpose</h3><p>Image-based data mining (IBDM) requires spatial normalisation to reference anatomy, which is challenging in breast radiotherapy due to variations in the treatment position, breast shape and volume. We aim to optimise spatial normalisation for breast IBDM.</p></div><div><h3>Materials and methods</h3><p>Data from 996 patients treated with radiotherapy for early-stage breast cancer, recruited in the REQUITE study, were included. Patients were treated supine (n = 811), with either bilateral or ipsilateral arm(s) raised (551/260, respectively) or in prone position (n = 185). Four deformable image registration (DIR) configurations for extrathoracic spatial normalisation were tested. We selected the best-performing DIR configuration and further investigated two pathways: <em>i</em>) registering prone/supine cohorts independently and <em>ii</em>) registering all patients to a supine reference. The impact of arm positioning in the supine cohort was quantified. DIR accuracy was estimated using Normalised Cross Correlation (NCC), Dice Similarity Coefficient (DSC), mean Distance to Agreement (MDA), 95 % Hausdorff Distance (95 %HD), and inter-patient landmark registration uncertainty (ILRU).</p></div><div><h3>Results</h3><p>DIR using B-spline and normalised mutual information (NMI) performed the best across all evaluation metrics. Supine-supine registrations yielded highest accuracy (0.98 ± 0.01, 0.91 ± 0.04, 0.23 ± 0.19 cm, 1.17 ± 1.18 cm, 0.51 ± 0.26 cm for NCC, DSC, MDA, 95 %HD, and ILRU), followed by prone-prone and supine-prone registrations. Arm positioning had no significant impact on registration performance. For the best DIR strategy, uncertainty of 0.44 and 0.81 cm in the breast and shoulder regions was found.</p></div><div><h3>Conclusions</h3><p>B-spline algorithm using NMI and registered supine and prone cohorts independently provides the most optimal spatial normalisation strategy for breast IBDM.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624001052/pdfft?md5=a49b0d252ac1037ec02849d1e69a131d&pid=1-s2.0-S2405631624001052-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the effect of higher Monte Carlo statistical uncertainties on accumulated doses after daily adaptive fractionated radiotherapy in prostate cancer 评估前列腺癌每日自适应分次放疗后较高的蒙特卡洛统计不确定性对累积剂量的影响
IF 3.4 Q2 ONCOLOGY Pub Date : 2024-09-05 DOI: 10.1016/j.phro.2024.100636

Background and purpose

Monte Carlo (MC) based dose calculations are widely used in radiotherapy with a low statistical uncertainty, being accurate but slow. Increasing the uncertainty accelerates the calculation, but reduces quality. In online adaptive planning, however, dose is recalculated every treatment fraction, potentially decreasing the cumulative calculation error. This study aimed to evaluate the effect of higher MC statistical uncertainty in the context of daily online plan adaptation.

Materials and methods

For twenty prostate cancer patients, daily plans were simulated for 5 fractions and three modes of variation: rigid whole body translations, local-rigid prostate translations and local-rigid prostate rotations. For each mode and fraction, adaptive plans were generated from a clinical reference plan using three MC uncertainty values: 1 % (standard), 2 % and 3 % per plan. Dose-volume criteria were evaluated for accumulated doses, checking plan acceptability and comparing higher uncertainty plans to the standard.

Results

Increasing the statistical uncertainty setting from 1 % to 2–3 % caused an accumulated median target D98% reduction of 0.1 Gy, with interquartile ranges (IQRs) up to 0.12 Gy. Rectum V35Gy increased in median up to 0.16 cm3 with IQRs up to 0.33 cm3. The bladder V28Gy and V32Gy showed median increases up to 0.24 %-point, with IQRs up to 0.54 %-point. Using 2 % uncertainty reduced calculation times by more than a minute for all modes of variation, with no further time gain when increasing to 3 %.

Conclusion

A 2–3 % MC statistical uncertainty was clinically feasible. Using a 2 % uncertainty setting reduced calculation times at the cost of limited relative dose-volume differences.

背景和目的基于蒙特卡洛(MC)的剂量计算广泛应用于放射治疗中,其统计不确定性较低,准确但速度较慢。增加不确定性会加快计算速度,但会降低质量。然而,在在线自适应规划中,每个治疗分量都会重新计算剂量,这有可能减少累积计算误差。本研究旨在评估较高 MC 统计不确定性对每日在线计划适应性的影响。材料和方法对 20 名前列腺癌患者模拟了 5 个分次和三种变化模式的每日计划:刚性全身平移、局部刚性前列腺平移和局部刚性前列腺旋转。对于每种模式和每个分段,自适应计划都是根据临床参考计划生成的,并使用了三种 MC 不确定值:每个计划的不确定性分别为 1%(标准)、2% 和 3%。结果将统计不确定性设置从 1% 提高到 2-3%,目标 D98% 的累积中值减少了 0.1 Gy,四分位数间距 (IQR) 达到 0.12 Gy。直肠 V35Gy 中位数增加到 0.16 cm3,IQRs 增加到 0.33 cm3。膀胱 V28Gy 和 V32Gy 的中位数增加了 0.24 %-点,IQRs 增加了 0.54 %-点。使用 2% 的不确定性可将所有变异模式的计算时间缩短 1 分钟以上,如果增加到 3%,时间将不再增加。使用 2% 的不确定性设置可减少计算时间,但代价是相对剂量-体积差异有限。
{"title":"Evaluating the effect of higher Monte Carlo statistical uncertainties on accumulated doses after daily adaptive fractionated radiotherapy in prostate cancer","authors":"","doi":"10.1016/j.phro.2024.100636","DOIUrl":"10.1016/j.phro.2024.100636","url":null,"abstract":"<div><h3>Background and purpose</h3><p>Monte Carlo (MC) based dose calculations are widely used in radiotherapy with a low statistical uncertainty, being accurate but slow. Increasing the uncertainty accelerates the calculation, but reduces quality. In online adaptive planning, however, dose is recalculated every treatment fraction, potentially decreasing the cumulative calculation error. This study aimed to evaluate the effect of higher MC statistical uncertainty in the context of daily online plan adaptation.</p></div><div><h3>Materials and methods</h3><p>For twenty prostate cancer patients, daily plans were simulated for 5 fractions and three modes of variation: rigid whole body translations, local-rigid prostate translations and local-rigid prostate rotations. For each mode and fraction, adaptive plans were generated from a clinical reference plan using three MC uncertainty values: 1 % (standard), 2 % and 3 % per plan. Dose-volume criteria were evaluated for accumulated doses, checking plan acceptability and comparing higher uncertainty plans to the standard.</p></div><div><h3>Results</h3><p>Increasing the statistical uncertainty setting from 1 % to 2–3 % caused an accumulated median target D<sub>98</sub><sub>%</sub> reduction of 0.1 Gy, with interquartile ranges (IQRs) up to 0.12 Gy. Rectum V<sub>35Gy</sub> increased in median up to 0.16 cm<sup>3</sup> with IQRs up to 0.33 cm<sup>3</sup>. The bladder V<sub>28Gy</sub> and V<sub>32Gy</sub> showed median increases up to 0.24 %-point, with IQRs up to 0.54 %-point. Using 2 % uncertainty reduced calculation times by more than a minute for all modes of variation, with no further time gain when increasing to 3 %.</p></div><div><h3>Conclusion</h3><p>A 2–3 % MC statistical uncertainty was clinically feasible. Using a 2 % uncertainty setting reduced calculation times at the cost of limited relative dose-volume differences.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624001064/pdfft?md5=a3af17f95df925315c54d13a6b199bae&pid=1-s2.0-S2405631624001064-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo dosimetry with an inorganic scintillation detector during multi-channel vaginal cylinder pulsed dose-rate brachytherapy: Dosimetry for pulsed dose-rate brachytherapy 在多通道阴道圆筒脉冲剂量率近距离放射治疗中使用无机闪烁探测器进行体内剂量测定:脉冲剂量率近距离放射治疗的剂量测定
IF 3.4 Q2 ONCOLOGY Pub Date : 2024-08-25 DOI: 10.1016/j.phro.2024.100638

Background and purpose

In vivo dosimetry is not standard in brachytherapy and some errors go undetected. The aim of this study was to evaluate the accuracy of multi-channel vaginal cylinder pulsed dose-rate brachytherapy using in vivo dosimetry.

Materials and methods

In vivo dosimetry data was collected during the years 2019–2022 for 22 patients (32 fractions) receiving multi-channel cylinder pulsed dose-rate brachytherapy. An inorganic scintillation detector was inserted in a cylinder channel. Each fraction was analysed as independent data sets. In vivo dosimetry-based source-tracking was used to determine the relative source-to-detector position. Measured dose was compared to planned and re-calculated source-tracking based doses. Assuming no change in organ and applicator geometry throughout treatment, the planned and source-tracking based dose distributions were compared in select volumes via γ-index analysis and dose-volume-histograms.

Results

The mean ± SD planned vs. measured dose deviations in the first pulse were 0.8 ± 5.9 %. In 31/32 fractions the deviation was within the combined in vivo dosimetry uncertainty (averaging 9.7 %, k = 2) and planning dose calculation uncertainty (1.6 %, k = 2). The dwell-position offsets were < 2 mm for 88 % of channels, with the largest being 5.1 mm (4.0 mm uncertainty, k = 2). 3 %/2 mm γ pass-rates averaged 97.0 % (clinical target volume (CTV)), 100.0 % (rectum), 99.9 % (bladder). The mean ± SD deviation was −1.1 ± 2.9 % for CTV D98, and −0.2 ± 0.9 % and −1.2 ± 2.5 %, for bladder and rectum D2cm3 respectively, indicating good agreement between intended and delivered dose.

Conclusions

In vivo dosimetry verified accurate and stable dose delivery in multi-channel vaginal cylinder based pulsed dose-rate brachytherapy.

背景和目的体内剂量测定并非近距离放射治疗的标准,有些误差会被忽视。本研究旨在利用体内剂量测定评估多通道阴道圆筒脉冲剂量率近距离放射治疗的准确性。材料和方法在2019-2022年间收集了22名接受多通道圆筒脉冲剂量率近距离放射治疗的患者(32个分次)的体内剂量测定数据。无机闪烁探测器安装在圆柱体通道中。每个部分都作为独立的数据集进行分析。使用基于体内剂量测定的放射源跟踪来确定放射源到探测器的相对位置。将测量到的剂量与计划剂量和基于源追踪重新计算的剂量进行比较。假设在整个治疗过程中器官和涂抹器的几何形状没有变化,则通过γ指数分析和剂量-体积-柱状图对选定体积中的计划剂量和基于源追踪的剂量分布进行比较。在 31/32 个馏分中,偏差在体内剂量测定不确定性(平均 9.7%,k = 2)和计划剂量计算不确定性(1.6%,k = 2)的综合范围内。88%的通道的停留位置偏差为 2 毫米,最大为 5.1 毫米(不确定性为 4.0 毫米,k = 2)。3 %/2 mm γ 通过率平均为 97.0 %(临床目标容积 (CTV))、100.0 %(直肠)和 99.9 %(膀胱)。CTV D98 的平均偏差(± SD)为-1.1 ± 2.9 %,膀胱和直肠 D2cm3 的平均偏差(± SD)分别为-0.2 ± 0.9 %和-1.2 ± 2.5 %,这表明预期剂量与输送剂量之间存在良好的一致性。
{"title":"In vivo dosimetry with an inorganic scintillation detector during multi-channel vaginal cylinder pulsed dose-rate brachytherapy: Dosimetry for pulsed dose-rate brachytherapy","authors":"","doi":"10.1016/j.phro.2024.100638","DOIUrl":"10.1016/j.phro.2024.100638","url":null,"abstract":"<div><h3>Background and purpose</h3><p>In vivo dosimetry is not standard in brachytherapy and some errors go undetected. The aim of this study was to evaluate the accuracy of multi-channel vaginal cylinder pulsed dose-rate brachytherapy using in vivo dosimetry.</p></div><div><h3>Materials and methods</h3><p>In vivo dosimetry data was collected during the years 2019–2022 for 22 patients (32 fractions) receiving multi-channel cylinder pulsed dose-rate brachytherapy. An inorganic scintillation detector was inserted in a cylinder channel. Each fraction was analysed as independent data sets. In vivo dosimetry-based source-tracking was used to determine the relative source-to-detector position. Measured dose was compared to planned and re-calculated source-tracking based doses. Assuming no change in organ and applicator geometry throughout treatment, the planned and source-tracking based dose distributions were compared in select volumes via γ-index analysis and dose-volume-histograms.</p></div><div><h3>Results</h3><p>The mean ± SD planned vs. measured dose deviations in the first pulse were 0.8 <span><math><mrow><mo>±</mo></mrow></math></span> 5.9 %. In 31/32 fractions the deviation was within the combined in vivo dosimetry uncertainty (averaging 9.7 %, <em>k =</em> 2) and planning dose calculation uncertainty (1.6 %, <em>k =</em> 2). The dwell-position offsets were &lt; 2 mm for 88 % of channels, with the largest being 5.1 mm (4.0 mm uncertainty, <em>k =</em> 2). 3 %/2 mm γ pass-rates averaged 97.0 % (clinical target volume (CTV)), 100.0 % (rectum), 99.9 % (bladder). The mean ± SD deviation was −1.<span><math><mrow><mn>1</mn></mrow></math></span> ± 2.9 % for CTV D98, and −0.2 ± 0.9 % and −1.2 ± 2.5 %, for bladder and rectum D2cm<sup>3</sup> respectively, indicating good agreement between intended and delivered dose.</p></div><div><h3>Conclusions</h3><p>In vivo dosimetry verified accurate and stable dose delivery in multi-channel vaginal cylinder based pulsed dose-rate brachytherapy.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624001088/pdfft?md5=e582505d93f2167330a052ddaf354c3b&pid=1-s2.0-S2405631624001088-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the use of comprehensive motion monitoring for intrafraction 3D drift assessment of hypofractionated prostate cancer patients on a 1.5T magnetic resonance imaging radiotherapy system 研究在 1.5T 磁共振成像放射治疗系统上使用综合运动监测对低分量前列腺癌患者进行分量内三维漂移评估的情况
IF 3.4 Q2 ONCOLOGY Pub Date : 2024-07-01 DOI: 10.1016/j.phro.2024.100596
Georgios Tsekas, Cornel Zachiu, Gijsbert H. Bol, Madelon van den Dobbelsteen, Lieke T.C. Meijers, Astrid L.H.M.W. van Lier, Johannes C.J. de Boer, Bas W. Raaymakers

This work investigates the use of a multi-2D cine magnetic resonance imaging-based comprehensive motion monitoring (CMM) system for the assessment of prostate intrafraction 3D drifts. The data of six healthy volunteers were analyzed and the values of a clinically-relevant registration quality factor metric exported by CMM were presented. Additionally, the CMM-derived prostate motion was compared to a 3D-based reference and the 2D-3D tracking agreement was reported. Due to the low quality of SI motion tracking (often >2 mm tracking mismatch between anatomical planes) we conclude that further improvements are desirable prior to clinical introduction of CMM for prostate drift corrections.

这项研究利用基于多二维电影磁共振成像的综合运动监测(CMM)系统来评估前列腺分块内的三维漂移。研究分析了六名健康志愿者的数据,并给出了 CMM 导出的临床相关配准质量因子指标值。此外,还将 CMM 导出的前列腺运动与基于 3D 的参照物进行了比较,并报告了 2D-3D 跟踪一致性。由于 SI 运动跟踪的质量不高(解剖平面之间经常出现 2 毫米的跟踪不匹配),我们得出结论,在临床上采用 CMM 进行前列腺偏移校正之前,需要进一步改进。
{"title":"Investigating the use of comprehensive motion monitoring for intrafraction 3D drift assessment of hypofractionated prostate cancer patients on a 1.5T magnetic resonance imaging radiotherapy system","authors":"Georgios Tsekas,&nbsp;Cornel Zachiu,&nbsp;Gijsbert H. Bol,&nbsp;Madelon van den Dobbelsteen,&nbsp;Lieke T.C. Meijers,&nbsp;Astrid L.H.M.W. van Lier,&nbsp;Johannes C.J. de Boer,&nbsp;Bas W. Raaymakers","doi":"10.1016/j.phro.2024.100596","DOIUrl":"10.1016/j.phro.2024.100596","url":null,"abstract":"<div><p>This work investigates the use of a multi-2D cine magnetic resonance imaging-based comprehensive motion monitoring (CMM) system for the assessment of prostate intrafraction 3D drifts. The data of six healthy volunteers were analyzed and the values of a clinically-relevant registration quality factor metric exported by CMM were presented. Additionally, the CMM-derived prostate motion was compared to a 3D-based reference and the 2D-3D tracking agreement was reported. Due to the low quality of SI motion tracking (often <span><math><mrow><mo>&gt;</mo></mrow></math></span>2 mm tracking mismatch between anatomical planes) we conclude that further improvements are desirable prior to clinical introduction of CMM for prostate drift corrections.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000666/pdfft?md5=124522edf1afc0b1a2bf7c02f26cb404&pid=1-s2.0-S2405631624000666-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141408009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Motion-induced dose perturbations in photon radiotherapy and proton therapy measured by deformable liver-shaped 3D dosimeters in an anthropomorphic phantom 在拟人模型中使用可变形肝形三维剂量计测量光子放射治疗和质子治疗中运动引起的剂量扰动
IF 3.4 Q2 ONCOLOGY Pub Date : 2024-07-01 DOI: 10.1016/j.phro.2024.100609

Background and purpose

The impact of intrafractional motion and deformations on clinical radiotherapy delivery has so far only been investigated by simulations as well as point and planar dose measurements. The aim of this study was to combine anthropomorphic 3D dosimetry with a deformable abdominal phantom to measure the influence of intra-fractional motion and gating in photon radiotherapy and evaluate the applicability in proton therapy.

Material and methods

An abdominal phantom was modified to hold a deformable anthropomorphic 3D dosimeter shaped as a human liver. A liver-specific photon radiotherapy and a proton pencil beam scanning therapy plan were delivered to the phantom without motion as well as with 12 mm sinusoidal motion while using either no respiratory gating or respiratory gating.

Results

Using the stationary irradiation as reference the local 3 %/2 mm 3D gamma index pass rate of the motion experiments in the planning target volume (PTV) was above 97 % (photon) and 78 % (proton) with gating whereas it was below 74 % (photon) and 45 % (proton) without gating.

Conclusions

For the first time a high-resolution deformable anthropomorphic 3D dosimeter embedded in a deformable abdominal phantom was applied for experimental validation of both photon and proton treatments of targets exhibiting respiratory motion. It was experimentally shown that gating improves dose coverage and the geometrical accuracy for both photon radiotherapy and proton therapy.

背景和目的迄今为止,人们仅通过模拟以及点剂量和平面剂量测量来研究点内运动和变形对临床放射治疗的影响。本研究旨在将拟人三维剂量测量与可变形腹部模型相结合,测量光子放疗中的点内运动和门控的影响,并评估其在质子治疗中的适用性。结果以静止辐照为参考,规划靶体积(PTV)内运动实验的局部 3 %/2 mm 3D 伽玛指数通过率在有门控的情况下高于 97 %(光子)和 78 %(质子),而在无门控的情况下低于 74 %(光子)和 45 %(质子)。结论首次将嵌入可变形腹部模型中的高分辨率可变形拟人三维剂量计用于对表现出呼吸运动的目标进行光子和质子治疗的实验验证。实验表明,门控提高了光子放疗和质子治疗的剂量覆盖率和几何精度。
{"title":"Motion-induced dose perturbations in photon radiotherapy and proton therapy measured by deformable liver-shaped 3D dosimeters in an anthropomorphic phantom","authors":"","doi":"10.1016/j.phro.2024.100609","DOIUrl":"10.1016/j.phro.2024.100609","url":null,"abstract":"<div><h3>Background and purpose</h3><p>The impact of intrafractional motion and deformations on clinical radiotherapy delivery has so far only been investigated by simulations as well as point and planar dose measurements. The aim of this study was to combine anthropomorphic 3D dosimetry with a deformable abdominal phantom to measure the influence of intra-fractional motion and gating in photon radiotherapy and evaluate the applicability in proton therapy.</p></div><div><h3>Material and methods</h3><p>An abdominal phantom was modified to hold a deformable anthropomorphic 3D dosimeter shaped as a human liver. A liver-specific photon radiotherapy and a proton pencil beam scanning therapy plan were delivered to the phantom without motion as well as with 12 mm sinusoidal motion while using either no respiratory gating or respiratory gating.</p></div><div><h3>Results</h3><p>Using the stationary irradiation as reference the local 3 %/2 mm 3D gamma index pass rate of the motion experiments in the planning target volume (PTV) was above 97 % (photon) and 78 % (proton) with gating whereas it was below 74 % (photon) and 45 % (proton) without gating.</p></div><div><h3>Conclusions</h3><p>For the first time a high-resolution deformable anthropomorphic 3D dosimeter embedded in a deformable abdominal phantom was applied for experimental validation of both photon and proton treatments of targets exhibiting respiratory motion. It was experimentally shown that gating improves dose coverage and the geometrical accuracy for both photon radiotherapy and proton therapy.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000794/pdfft?md5=4d59bb653313cf7c63ec5bcea269a7c2&pid=1-s2.0-S2405631624000794-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141693852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physics and Imaging in Radiation Oncology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1