Alejandro Gonzalez-Garcia , Herman Castañeda , Jesús De León-Morales
{"title":"Unmanned surface vehicle robust tracking control using an adaptive super-twisting controller","authors":"Alejandro Gonzalez-Garcia , Herman Castañeda , Jesús De León-Morales","doi":"10.1016/j.conengprac.2024.105985","DOIUrl":null,"url":null,"abstract":"<div><p>A differential drive catamaran unmanned surface vehicle tracking control in presence of external disturbances and uncertainties is addressed. A super-twisting control considering a single adaptive gain is adopted, where the number of tuning parameters of this control gain is reduced compared with standard adaptive super-twisting approaches. Furthermore, the gain exhibits smooth dynamics compared with controls using discontinuous functions signals. An analysis of the closed loop stability is provided using a Lyapunov approach. The proposed adaptive super-twisting approach is designed to drive the vessel along time-varying trajectories in presence of perturbations, ensuring robustness, and practical finite-time convergence. Numerical simulations, and real-time experimental tests using a prototype, illustrate the control performance under payload uncertainty and external perturbations. For further demonstration, a comparison with some of the existing versions of the super-twisting control included one with variable gain is provided.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096706612400145X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
A differential drive catamaran unmanned surface vehicle tracking control in presence of external disturbances and uncertainties is addressed. A super-twisting control considering a single adaptive gain is adopted, where the number of tuning parameters of this control gain is reduced compared with standard adaptive super-twisting approaches. Furthermore, the gain exhibits smooth dynamics compared with controls using discontinuous functions signals. An analysis of the closed loop stability is provided using a Lyapunov approach. The proposed adaptive super-twisting approach is designed to drive the vessel along time-varying trajectories in presence of perturbations, ensuring robustness, and practical finite-time convergence. Numerical simulations, and real-time experimental tests using a prototype, illustrate the control performance under payload uncertainty and external perturbations. For further demonstration, a comparison with some of the existing versions of the super-twisting control included one with variable gain is provided.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.