Shikhasmita Das , Jasha Momo H. Anal , Pranjal Kalita , Lakshi Saikia , Samuel Lalthazuala Rokhum
{"title":"Upcycling waste snail shells into high-performance nanocatalyst for optimized biodiesel production: A sustainable approach","authors":"Shikhasmita Das , Jasha Momo H. Anal , Pranjal Kalita , Lakshi Saikia , Samuel Lalthazuala Rokhum","doi":"10.1016/j.inv.2024.100024","DOIUrl":null,"url":null,"abstract":"<div><p>The transesterification of soybean oil (SO) to biodiesel utilizing a basic CaO nanocatalyst derived from waste snail shells has been reported in this work. The steady rise in greenhouse gas emissions contributes to environmental pollution, posing a significant threat to human life due to the escalating rates of petroleum consumption worldwide. Thus, biodiesel appears as a potential liquid fuel for replacing petroleum diesel. Here we have utilized waste snail shells as a cost-effective material which will reduce the overall biodiesel manufacturing cost. We obtained a remarkable biodiesel yield of 96.1 % with a very low activation energy (30.45 kJ mol<sup>−1</sup>). The catalyst displayed exceptional stability, maintaining consistent catalytic activity over six consecutive cycles without experiencing a notable decline. Using life cycle cost analysis (LCCA) it has been discovered that the estimated cost of producing 1 kg of biodiesel is merely $ 0.935, highlighting its robust potential for extensive commercial adoption.</p></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772444124000053/pdfft?md5=bdb6b56b0cd300c25431260603f86e67&pid=1-s2.0-S2772444124000053-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invention Disclosure","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772444124000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The transesterification of soybean oil (SO) to biodiesel utilizing a basic CaO nanocatalyst derived from waste snail shells has been reported in this work. The steady rise in greenhouse gas emissions contributes to environmental pollution, posing a significant threat to human life due to the escalating rates of petroleum consumption worldwide. Thus, biodiesel appears as a potential liquid fuel for replacing petroleum diesel. Here we have utilized waste snail shells as a cost-effective material which will reduce the overall biodiesel manufacturing cost. We obtained a remarkable biodiesel yield of 96.1 % with a very low activation energy (30.45 kJ mol−1). The catalyst displayed exceptional stability, maintaining consistent catalytic activity over six consecutive cycles without experiencing a notable decline. Using life cycle cost analysis (LCCA) it has been discovered that the estimated cost of producing 1 kg of biodiesel is merely $ 0.935, highlighting its robust potential for extensive commercial adoption.