Large language models present new questions for decision support

IF 20.1 1区 管理学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE International Journal of Information Management Pub Date : 2024-06-04 DOI:10.1016/j.ijinfomgt.2024.102811
Abram Handler , Kai R. Larsen , Richard Hackathorn
{"title":"Large language models present new questions for decision support","authors":"Abram Handler ,&nbsp;Kai R. Larsen ,&nbsp;Richard Hackathorn","doi":"10.1016/j.ijinfomgt.2024.102811","DOIUrl":null,"url":null,"abstract":"<div><p>Large language models (LLMs) have proven capable of assisting with many aspects of organizational decision making, such as helping to collect information from databases and helping to brainstorm possible courses of action ahead of making a choice. We propose that broad adoption of these technologies introduces new questions in the study of decision support systems, which assist people with complex and open-ended choices in business. Where traditional study of decision support has focused on bespoke tools to solve narrow problems in specific domains, LLMs offer a general-purpose decision support technology which can be applied in many contexts. To organize the wealth of new questions which result from this shift, we turn to a classic framework from Herbert Simon, which proposes that decision making requires collecting evidence, considering alternatives, and finally making a choice. Working from Simon’s framework, we describe how LLMs introduce new questions at each stage of this decision-making process. We then group new questions into three overarching themes for future research, centered on how LLMs will change individual decision making, how LLMs will change organizational decision making, and how to design new decision support technologies which make use of the new capabilities of LLMs.</p></div>","PeriodicalId":48422,"journal":{"name":"International Journal of Information Management","volume":null,"pages":null},"PeriodicalIF":20.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268401224000598","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have proven capable of assisting with many aspects of organizational decision making, such as helping to collect information from databases and helping to brainstorm possible courses of action ahead of making a choice. We propose that broad adoption of these technologies introduces new questions in the study of decision support systems, which assist people with complex and open-ended choices in business. Where traditional study of decision support has focused on bespoke tools to solve narrow problems in specific domains, LLMs offer a general-purpose decision support technology which can be applied in many contexts. To organize the wealth of new questions which result from this shift, we turn to a classic framework from Herbert Simon, which proposes that decision making requires collecting evidence, considering alternatives, and finally making a choice. Working from Simon’s framework, we describe how LLMs introduce new questions at each stage of this decision-making process. We then group new questions into three overarching themes for future research, centered on how LLMs will change individual decision making, how LLMs will change organizational decision making, and how to design new decision support technologies which make use of the new capabilities of LLMs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型语言模型为决策支持提出了新问题
大型语言模型(LLMs)已被证明能够在组织决策的许多方面提供帮助,例如帮助从数据库中收集信息,帮助在做出选择之前对可能的行动方案进行头脑风暴。我们认为,这些技术的广泛应用为决策支持系统的研究提出了新的问题,因为决策支持系统可以帮助人们在商业活动中做出复杂、开放式的选择。传统的决策支持研究主要集中在定制工具上,以解决特定领域的狭隘问题,而 LLM 则提供了一种通用的决策支持技术,可应用于多种情况。赫伯特-西蒙(Herbert Simon)提出了决策制定需要收集证据、考虑替代方案并最终做出选择的经典框架。根据西蒙的框架,我们描述了法律硕士如何在决策过程的每个阶段提出新问题。然后,我们将新问题归纳为未来研究的三大主题,分别是:生命周期管理将如何改变个人决策;生命周期管理将如何改变组织决策;以及如何利用生命周期管理的新功能设计新的决策支持技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Information Management
International Journal of Information Management INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
53.10
自引率
6.20%
发文量
111
审稿时长
24 days
期刊介绍: The International Journal of Information Management (IJIM) is a distinguished, international, and peer-reviewed journal dedicated to providing its readers with top-notch analysis and discussions within the evolving field of information management. Key features of the journal include: Comprehensive Coverage: IJIM keeps readers informed with major papers, reports, and reviews. Topical Relevance: The journal remains current and relevant through Viewpoint articles and regular features like Research Notes, Case Studies, and a Reviews section, ensuring readers are updated on contemporary issues. Focus on Quality: IJIM prioritizes high-quality papers that address contemporary issues in information management.
期刊最新文献
Using the influence of human-as-machine representation for self-improvement products The exploration of users’ perceived value from personalization and virtual conversational agents to enable a smart home assemblage– A mixed method approach Extending the unified theory of acceptance and use of technology for sustainable technologies context Unrequited love? A mixed-methods study of parasocial engagement with social media influencers Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1