L'Emir Wassim El Ayoubi , Fatima Allaw , Elie Moussa , Souha S. Kanj
{"title":"Ibrexafungerp: A narrative overview","authors":"L'Emir Wassim El Ayoubi , Fatima Allaw , Elie Moussa , Souha S. Kanj","doi":"10.1016/j.crmicr.2024.100245","DOIUrl":null,"url":null,"abstract":"<div><p>Ibrexafungerp (IBX) is a new antifungal drug that recently entered the antifungal landscape. It disrupts fungal cell wall synthesis by non-competitive inhibition of the β-(1,3)-D-glucan (BDG) synthase enzyme. It has demonstrated activity against a range of pathogens including <em>Candida</em> and <em>Aspergillus</em> spp., as well as retaining its activity against azole-resistant and echinocandin-resistant strains. It also exhibits anti-biofilm properties. Pharmacokinetic (PK) studies revealed favorable bioavailability, high protein binding, and extensive tissue distribution with a low potential for CYP-mediated drug interactions. It is characterized by the same mechanism of action of echinocandins with limited cross-resistance with other antifungal agents. Resistance to this drug can arise from mutations in the <em>FKS</em> genes, primarily <em>FKS2</em> mutations in <em>Nakaseomyces glabrata</em>. In vivo, IBX was found to be effective in murine models of invasive candidiasis (IC) and invasive pulmonary aspergillosis (IPA). It also showed promising results in preventing and treating <em>Pneumocystis jirovecii</em> infections. Clinical trials showed that IBX was effective and non-inferior to fluconazole in treating vulvovaginal candidiasis (VVC), including complicated cases, as well as in preventing its recurrence. These trials positioned it as a Food and Drug Administration (FDA)-approved option for the treatment and prophylaxis of VVC. Trials showed comparable responses to standard-of-care in IC, with favorable preliminary results in <em>C. auris</em> infections in terms of efficacy and tolerability as well as in refractory cases of IC. Mild adverse reactions have been reported including gastrointestinal symptoms. Overall, IBX represents a significant addition to the antifungal armamentarium, with its unique action, spectrum of activity, and encouraging clinical trial results warranting further investigation.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"6 ","pages":"Article 100245"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666517424000270/pdfft?md5=c5569e8a01322f3810b939d41b0f2226&pid=1-s2.0-S2666517424000270-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517424000270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ibrexafungerp (IBX) is a new antifungal drug that recently entered the antifungal landscape. It disrupts fungal cell wall synthesis by non-competitive inhibition of the β-(1,3)-D-glucan (BDG) synthase enzyme. It has demonstrated activity against a range of pathogens including Candida and Aspergillus spp., as well as retaining its activity against azole-resistant and echinocandin-resistant strains. It also exhibits anti-biofilm properties. Pharmacokinetic (PK) studies revealed favorable bioavailability, high protein binding, and extensive tissue distribution with a low potential for CYP-mediated drug interactions. It is characterized by the same mechanism of action of echinocandins with limited cross-resistance with other antifungal agents. Resistance to this drug can arise from mutations in the FKS genes, primarily FKS2 mutations in Nakaseomyces glabrata. In vivo, IBX was found to be effective in murine models of invasive candidiasis (IC) and invasive pulmonary aspergillosis (IPA). It also showed promising results in preventing and treating Pneumocystis jirovecii infections. Clinical trials showed that IBX was effective and non-inferior to fluconazole in treating vulvovaginal candidiasis (VVC), including complicated cases, as well as in preventing its recurrence. These trials positioned it as a Food and Drug Administration (FDA)-approved option for the treatment and prophylaxis of VVC. Trials showed comparable responses to standard-of-care in IC, with favorable preliminary results in C. auris infections in terms of efficacy and tolerability as well as in refractory cases of IC. Mild adverse reactions have been reported including gastrointestinal symptoms. Overall, IBX represents a significant addition to the antifungal armamentarium, with its unique action, spectrum of activity, and encouraging clinical trial results warranting further investigation.