Ye Huo , Muhammad Niaz Khan , Zhu Feng Shao , Yu Pan
{"title":"Development of a novel cable-driven parallel robot for full-cycle ankle rehabilitation","authors":"Ye Huo , Muhammad Niaz Khan , Zhu Feng Shao , Yu Pan","doi":"10.1016/j.mechatronics.2024.103210","DOIUrl":null,"url":null,"abstract":"<div><p>Automatic rehabilitation equipment provides timely and effective rehabilitation training, which is critical in accelerating the recovery of joint injury and motion function. This paper proposes a novel cable-driven parallel robot for full-cycle ankle rehabilitation considering large angle, considerable moment, and multi-degree of freedom coupling. The configuration design, dimension optimization, control strategy, and prototype development are completed. By adopting rigid branch and cross cables, noticeable rotation angle and moment are achieved with a simple and lightweight configuration. Optimal design is implemented based on the grid search with the balance between the maximum cable force and the robot size. The control strategy that meets multiple training modes is developed, covering the entire rehabilitation cycle. Finally, the prototype is implemented to verify the research validity and provides high-performance rehabilitation equipment for the ankle joint.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"101 ","pages":"Article 103210"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000758","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic rehabilitation equipment provides timely and effective rehabilitation training, which is critical in accelerating the recovery of joint injury and motion function. This paper proposes a novel cable-driven parallel robot for full-cycle ankle rehabilitation considering large angle, considerable moment, and multi-degree of freedom coupling. The configuration design, dimension optimization, control strategy, and prototype development are completed. By adopting rigid branch and cross cables, noticeable rotation angle and moment are achieved with a simple and lightweight configuration. Optimal design is implemented based on the grid search with the balance between the maximum cable force and the robot size. The control strategy that meets multiple training modes is developed, covering the entire rehabilitation cycle. Finally, the prototype is implemented to verify the research validity and provides high-performance rehabilitation equipment for the ankle joint.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.