{"title":"Infrared Small Target Detection Based on Density Peak Search and Local Features","authors":"Leihong Zhang, Hui Yang, Qinghe Zheng, Yiqiang Zhang, Dawei Zhang","doi":"10.1049/2024/6814362","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The detection of small infrared targets is still a challenging task and efficient and accurate detection plays a key role in modern infrared search and tracking military applications. However, small infrared targets are difficult to detect due to their weak brightness, small size and lack of shape, structure, texture, and other information elements. In this paper, we propose a target detection method. First, to address the problem that the proximity of targets to high-brightness clutter leads to missed detection of candidate targets, a Gaussian differential filtering preprocessed image is used to suppress high-brightness clutter. Second, a density-peaked global search method is used to determine the location of candidate targets in the preprocessed image. We then use local contrast to the candidate target points to enhance the gradient features and suppress background clutter. The Facet model is used to compute multidirectional gradient features at each point. A new efficient surrounding symmetric region partitioning scheme is constructed to capture the gradient characteristics of targets of different sizes in eight directions, followed by weighting the candidate target gradient characteristics using the standard deviation of the symmetric region difference. Finally, an adaptive threshold segmentation method is used to extract small targets. Experimental results show that the method proposed in this paper has better detection accuracy and robustness compared with other detection methods.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6814362","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6814362","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of small infrared targets is still a challenging task and efficient and accurate detection plays a key role in modern infrared search and tracking military applications. However, small infrared targets are difficult to detect due to their weak brightness, small size and lack of shape, structure, texture, and other information elements. In this paper, we propose a target detection method. First, to address the problem that the proximity of targets to high-brightness clutter leads to missed detection of candidate targets, a Gaussian differential filtering preprocessed image is used to suppress high-brightness clutter. Second, a density-peaked global search method is used to determine the location of candidate targets in the preprocessed image. We then use local contrast to the candidate target points to enhance the gradient features and suppress background clutter. The Facet model is used to compute multidirectional gradient features at each point. A new efficient surrounding symmetric region partitioning scheme is constructed to capture the gradient characteristics of targets of different sizes in eight directions, followed by weighting the candidate target gradient characteristics using the standard deviation of the symmetric region difference. Finally, an adaptive threshold segmentation method is used to extract small targets. Experimental results show that the method proposed in this paper has better detection accuracy and robustness compared with other detection methods.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf