Nazish Khalid, Muhammad Zubair, Muhammad Qasim Mehmood, Yehia Massoud
{"title":"Emerging paradigms in microwave imaging technology for biomedical applications: unleashing the power of artificial intelligence","authors":"Nazish Khalid, Muhammad Zubair, Muhammad Qasim Mehmood, Yehia Massoud","doi":"10.1038/s44303-024-00012-8","DOIUrl":null,"url":null,"abstract":"In recent years, microwave imaging (MWI) has emerged as a non-ionizing and cost-effective modality in healthcare, specifically within medical imaging. Concurrently, advances in artificial intelligence (AI) have significantly augmented the capabilities of medical imaging tools. This paper explores the intersection of these two domains, focusing on the integration of AI algorithms into MWI techniques to elevate accuracy and overall performance. Within the scope of existing literature, representative prior works are compared concerning the application of AI in both the “MWI for Healthcare Applications\" and “Artificial Intelligence Assistance In MWI\" sections. This comparative analysis sheds light on the diverse approaches employed to enhance the synergy between AI and MWI. While highlighting the state-of-the-art technology in MWI and its historical context, this paper delves into the historical taxonomy of AI-assisted MWI, elucidating the evolution of intelligent systems within this domain. Moreover, it critically examines prominent works, providing a nuanced understanding of the advancements and challenges encountered. Addressing the limitations and challenges inherent in developing AI-assisted MWI systems like Generalization to different conditions, Generalization to different conditions, etc the paper offers a brief synopsis of these obstacles, emphasizing the importance of overcoming them for robust and reliable results in actual clinical environments. Finally, the paper not only underscores the current advancements but also anticipates future innovations and developments in utilizing AI for MWI applications in healthcare.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-20"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00012-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-024-00012-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, microwave imaging (MWI) has emerged as a non-ionizing and cost-effective modality in healthcare, specifically within medical imaging. Concurrently, advances in artificial intelligence (AI) have significantly augmented the capabilities of medical imaging tools. This paper explores the intersection of these two domains, focusing on the integration of AI algorithms into MWI techniques to elevate accuracy and overall performance. Within the scope of existing literature, representative prior works are compared concerning the application of AI in both the “MWI for Healthcare Applications" and “Artificial Intelligence Assistance In MWI" sections. This comparative analysis sheds light on the diverse approaches employed to enhance the synergy between AI and MWI. While highlighting the state-of-the-art technology in MWI and its historical context, this paper delves into the historical taxonomy of AI-assisted MWI, elucidating the evolution of intelligent systems within this domain. Moreover, it critically examines prominent works, providing a nuanced understanding of the advancements and challenges encountered. Addressing the limitations and challenges inherent in developing AI-assisted MWI systems like Generalization to different conditions, Generalization to different conditions, etc the paper offers a brief synopsis of these obstacles, emphasizing the importance of overcoming them for robust and reliable results in actual clinical environments. Finally, the paper not only underscores the current advancements but also anticipates future innovations and developments in utilizing AI for MWI applications in healthcare.