Acoustic metamaterials characterization via laser plasma sound sources

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-06-04 DOI:10.1038/s43246-024-00529-w
Konstantinos Kaleris, Emmanouil Kaniolakis-Kaloudis, Nikolaos Aravantinos-Zafiris, Dionysios. T. G. Katerelos, Vassilis M. Dimitriou, Makis Bakarezos, Michael Tatarakis, John Mourjopoulos, Michail M. Sigalas, Nektarios A. Papadogiannis
{"title":"Acoustic metamaterials characterization via laser plasma sound sources","authors":"Konstantinos Kaleris, Emmanouil Kaniolakis-Kaloudis, Nikolaos Aravantinos-Zafiris, Dionysios. T. G. Katerelos, Vassilis M. Dimitriou, Makis Bakarezos, Michael Tatarakis, John Mourjopoulos, Michail M. Sigalas, Nektarios A. Papadogiannis","doi":"10.1038/s43246-024-00529-w","DOIUrl":null,"url":null,"abstract":"Phononic crystals and acoustic metamaterials are expected to become an important enabling technology for science and industry. Currently, various experimental methods are used for evaluation of acoustic meta-structures, such as impedance tubes and anechoic chambers. Here we present a method for the precise characterization of acoustic meta-structures that utilizes rapid broadband acoustic pulses generated by point-like and effectively massless laser plasma sound sources. The method allows for broadband frequency response and directivity evaluations of meta-structures with arbitrary geometries in multiple sound propagation axes while also enabling acoustic excitation inside the structure. Experimental results are presented from acoustic evaluations of various phononic crystals with band gaps in the audible range, notably also in the very low frequencies, validating the predictions of numerical models with high accuracy. The proposed method is expected to boost research and commercial adoption of acoustic metamaterials in the near future. Phononic crystals and acoustic metamaterials hold great promise in advancing technology and scientific understanding of materials. Here, the authors demonstrate a characterization method for acoustic meta-structures based on broadband acoustic pulses generated by laser-plasma sound sources.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00529-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00529-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Phononic crystals and acoustic metamaterials are expected to become an important enabling technology for science and industry. Currently, various experimental methods are used for evaluation of acoustic meta-structures, such as impedance tubes and anechoic chambers. Here we present a method for the precise characterization of acoustic meta-structures that utilizes rapid broadband acoustic pulses generated by point-like and effectively massless laser plasma sound sources. The method allows for broadband frequency response and directivity evaluations of meta-structures with arbitrary geometries in multiple sound propagation axes while also enabling acoustic excitation inside the structure. Experimental results are presented from acoustic evaluations of various phononic crystals with band gaps in the audible range, notably also in the very low frequencies, validating the predictions of numerical models with high accuracy. The proposed method is expected to boost research and commercial adoption of acoustic metamaterials in the near future. Phononic crystals and acoustic metamaterials hold great promise in advancing technology and scientific understanding of materials. Here, the authors demonstrate a characterization method for acoustic meta-structures based on broadband acoustic pulses generated by laser-plasma sound sources.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过激光等离子声源表征声学超材料
声晶体和声超材料有望成为科学和工业领域的一项重要赋能技术。目前,用于评估声学超结构的实验方法多种多样,如阻抗管和消声室。在此,我们介绍一种精确表征声学元结构的方法,该方法利用点状和有效无质量激光等离子声源产生的快速宽带声脉冲。该方法可在多个声传播轴上对具有任意几何形状的元结构进行宽带频率响应和指向性评估,同时还能在结构内部进行声激励。实验结果显示了对各种声子晶体的声学评估,其带隙在可听范围内,特别是在极低频段,验证了数值模型的高精度预测。所提出的方法有望在不久的将来促进声超材料的研究和商业应用。声波晶体和声学超材料在促进技术发展和科学理解材料方面大有可为。在此,作者展示了一种基于激光等离子体声源产生的宽带声脉冲的声超结构表征方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Defect-engineered monolayer MoS2 with enhanced memristive and synaptic functionality for neuromorphic computing High-temperature Brown-Zak oscillations in graphene/hBN moiré field effect transistor fabricated using molecular beam epitaxy Toward direct band gaps in typical 2D transition-metal dichalcogenides junctions via real and energy spaces tuning Transformation of europium metal-organic framework from 3D via 2D into exfoliating 3D for enzyme immobilization Stable and sustainable perovskite solar modules by optimizing blade coating nickel oxide deposition over 15 × 15 cm2 area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1