Nano-optomechanical fiber-tip sensing

Arthur L. Hendriks, Luca Picelli, René P. J. van Veldhoven, Ewold Verhagen, Andrea Fiore
{"title":"Nano-optomechanical fiber-tip sensing","authors":"Arthur L. Hendriks, Luca Picelli, René P. J. van Veldhoven, Ewold Verhagen, Andrea Fiore","doi":"10.1038/s44310-024-00011-y","DOIUrl":null,"url":null,"abstract":"Nano-optomechanical sensors exploit light confinement at the nanoscale to enable very precise measurements of displacement, force, acceleration, and mass. Their application is hampered by the complex optical set-ups or packaging schemes required to couple light to and from the nano-optomechanical resonator. In this work, we present a fiber-coupled nano-optomechanical sensor that requires no coupling optics. This is achieved by directly placing a nano-optomechanical structure, a double membrane photonic crystal (DM-PhC), on the facet of a fiber, using a simple and scalable wafer-to-fiber transfer method. The device is probed in reflection and has a resonance at telecom wavelengths with a relatively broad spectral width of 3–10 nm, which is advantageous for a simple read-out and achieves a displacement imprecision of $$10\\,{{\\rm{fm}}}/{\\sqrt{{\\rm{Hz}}}}$$ . Using resonant driving and a ringdown measurement, we can induce and monitor mechanical oscillations with an nm-scale amplitude via the fiber, which allows for tracking the mechanical resonant frequency and the mechanical linewidth with imprecisions of 79 and 12 Hz, respectively, at integration times of 4.5 s. We further demonstrate the application of this fiber-tip sensor to the measurement of pressure, using the effect of collisional damping on the mechanical linewidth, leading to the imprecision of $$9\\times {10}^{-4}\\,{\\rm{mbar}}$$ with an integration time of 290 s. This combination of optomechanics and fiber-tip sensing may open the way to a new generation of fiber sensors with unprecedented functionality, ultrasmall footprint, and low-cost readout.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00011-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44310-024-00011-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nano-optomechanical sensors exploit light confinement at the nanoscale to enable very precise measurements of displacement, force, acceleration, and mass. Their application is hampered by the complex optical set-ups or packaging schemes required to couple light to and from the nano-optomechanical resonator. In this work, we present a fiber-coupled nano-optomechanical sensor that requires no coupling optics. This is achieved by directly placing a nano-optomechanical structure, a double membrane photonic crystal (DM-PhC), on the facet of a fiber, using a simple and scalable wafer-to-fiber transfer method. The device is probed in reflection and has a resonance at telecom wavelengths with a relatively broad spectral width of 3–10 nm, which is advantageous for a simple read-out and achieves a displacement imprecision of $$10\,{{\rm{fm}}}/{\sqrt{{\rm{Hz}}}}$$ . Using resonant driving and a ringdown measurement, we can induce and monitor mechanical oscillations with an nm-scale amplitude via the fiber, which allows for tracking the mechanical resonant frequency and the mechanical linewidth with imprecisions of 79 and 12 Hz, respectively, at integration times of 4.5 s. We further demonstrate the application of this fiber-tip sensor to the measurement of pressure, using the effect of collisional damping on the mechanical linewidth, leading to the imprecision of $$9\times {10}^{-4}\,{\rm{mbar}}$$ with an integration time of 290 s. This combination of optomechanics and fiber-tip sensing may open the way to a new generation of fiber sensors with unprecedented functionality, ultrasmall footprint, and low-cost readout.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米光机械光纤尖端传感
纳米光机械传感器利用光在纳米尺度上的局限性,能够非常精确地测量位移、力、加速度和质量。由于纳米光机械谐振器之间的光耦合需要复杂的光学设置或封装方案,这阻碍了它们的应用。在这项工作中,我们提出了一种无需耦合光学器件的光纤耦合纳米光学机械传感器。这是通过使用简单、可扩展的晶圆到光纤传输方法,将纳米光机械结构--双膜光子晶体(DM-PhC)直接置于光纤面上实现的。该器件在反射中进行探测,在电信波长处具有共振,光谱宽度相对较宽,为3-10 nm,有利于简单读出,实现了$$10,{\rm{fm}}/\{sqrt{\rm{Hz}}}}$$的位移精度。利用谐振驱动和降频测量,我们可以通过光纤诱导和监测 nm 级振幅的机械振荡,从而跟踪机械谐振频率和机械线宽,精度分别为 79 和 12 Hz,积分时间为 4.5 s。我们进一步展示了这种光纤尖端传感器在压力测量中的应用,利用碰撞阻尼对机械线宽的影响,在 290 秒的积分时间内,精度达到 $$9\times {10}^{-4}\,{\rm{mbar}}$ 。这种光机械学与光纤尖端传感的结合可能会开辟一条通往具有前所未有的功能、超小型占地面积和低成本读出的新一代光纤传感器的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AlGaN/AlN heterostructures: an emerging platform for integrated photonics. Broadband cavity-enhanced Kerr Comb spectroscopy on Chip Perspectives of chiral nanophotonics: from mechanisms to biomedical applications Teleportation of a genuine single-rail vacuum-one-photon qubit generated via a quantum dot source Non-Hermitian selective thermal emitter for thermophotovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1